Nuprl Lemma : dM-lift-nc-0
∀J:fset(ℕ). ∀j:{i:ℕ| ¬i ∈ J} . ∀v:Point(dM(J)). ((dM-lift(J;J+j;(j0)) v) = v ∈ Point(dM(J)))
Proof
Definitions occuring in Statement :
nc-0: (i0)
,
add-name: I+i
,
dM-lift: dM-lift(I;J;f)
,
dM: dM(I)
,
fset-member: a ∈ s
,
fset: fset(T)
,
int-deq: IntDeq
,
nat: ℕ
,
all: ∀x:A. B[x]
,
not: ¬A
,
set: {x:A| B[x]}
,
apply: f a
,
equal: s = t ∈ T
,
lattice-point: Point(l)
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
,
subtype_rel: A ⊆r B
,
DeMorgan-algebra: DeMorganAlgebra
,
so_lambda: λ2x.t[x]
,
prop: ℙ
,
and: P ∧ Q
,
guard: {T}
,
uimplies: b supposing a
,
so_apply: x[s]
,
not: ¬A
,
implies: P
⇒ Q
,
nat: ℕ
,
false: False
,
ge: i ≥ j
,
decidable: Dec(P)
,
or: P ∨ Q
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
nc-0: (i0)
,
names: names(I)
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
uiff: uiff(P;Q)
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
sq_type: SQType(T)
,
bnot: ¬bb
,
assert: ↑b
,
true: True
,
squash: ↓T
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
Lemmas referenced :
lattice-point_wf,
dM_wf,
subtype_rel_set,
DeMorgan-algebra-structure_wf,
lattice-structure_wf,
lattice-axioms_wf,
bounded-lattice-structure-subtype,
DeMorgan-algebra-structure-subtype,
subtype_rel_transitivity,
bounded-lattice-structure_wf,
bounded-lattice-axioms_wf,
equal_wf,
lattice-meet_wf,
lattice-join_wf,
DeMorgan-algebra-axioms_wf,
istype-nat,
fset-member_wf,
nat_wf,
int-deq_wf,
strong-subtype-deq-subtype,
strong-subtype-set3,
le_wf,
istype-int,
strong-subtype-self,
istype-void,
fset_wf,
f-subset-add-name,
add-name_wf,
nat_properties,
decidable__le,
full-omega-unsat,
intformand_wf,
intformnot_wf,
intformle_wf,
itermConstant_wf,
itermVar_wf,
int_formula_prop_and_lemma,
int_formula_prop_not_lemma,
int_formula_prop_le_lemma,
int_term_value_constant_lemma,
int_term_value_var_lemma,
int_formula_prop_wf,
istype-le,
f-subset_wf,
nc-0_wf,
eq_int_wf,
eqtt_to_assert,
assert_of_eq_int,
eqff_to_assert,
bool_cases_sqequal,
subtype_base_sq,
bool_wf,
bool_subtype_base,
assert-bnot,
neg_assert_of_eq_int,
dM_inc_wf,
names_wf,
squash_wf,
true_wf,
istype-universe,
dM-lift-is-id,
subtype_rel_self,
iff_weakening_equal,
int_subtype_base
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation_alt,
universeIsType,
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
hypothesis,
applyEquality,
sqequalRule,
instantiate,
lambdaEquality_alt,
productEquality,
cumulativity,
because_Cache,
independent_isectElimination,
isectEquality,
setIsType,
functionIsType,
intEquality,
natural_numberEquality,
dependent_functionElimination,
setElimination,
rename,
dependent_set_memberEquality_alt,
unionElimination,
approximateComputation,
independent_functionElimination,
dependent_pairFormation_alt,
int_eqEquality,
Error :memTop,
independent_pairFormation,
voidElimination,
inhabitedIsType,
equalityElimination,
equalityTransitivity,
equalitySymmetry,
productElimination,
equalityIstype,
promote_hyp,
imageElimination,
universeEquality,
imageMemberEquality,
baseClosed
Latex:
\mforall{}J:fset(\mBbbN{}). \mforall{}j:\{i:\mBbbN{}| \mneg{}i \mmember{} J\} . \mforall{}v:Point(dM(J)). ((dM-lift(J;J+j;(j0)) v) = v)
Date html generated:
2020_05_20-PM-01_36_33
Last ObjectModification:
2020_01_06-PM-00_03_37
Theory : cubical!type!theory
Home
Index