Nuprl Lemma : dM-lift-is-id

[I:fset(ℕ)]. ∀[J:{J:fset(ℕ)| I ⊆ J} ]. ∀[h:I ⟶ J].
  ∀[x:Point(dM(I))]. ((dM-lift(I;J;h) x) x ∈ Point(dM(I))) supposing ∀i:names(I). ((h i) = <i> ∈ Point(dM(I)))


Proof




Definitions occuring in Statement :  dM-lift: dM-lift(I;J;f) names-hom: I ⟶ J dM_inc: <x> dM: dM(I) names: names(I) lattice-point: Point(l) f-subset: xs ⊆ ys fset: fset(T) int-deq: IntDeq nat: uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] set: {x:A| B[x]}  apply: a equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] f-subset: xs ⊆ ys member: t ∈ T so_lambda: λ2x.t[x] uimplies: supposing a subtype_rel: A ⊆B prop: so_apply: x[s] implies:  Q all: x:A. B[x] sq_stable: SqStable(P) squash: T dma-hom: dma-hom(dma1;dma2) bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) names-hom: I ⟶ J true: True guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q DeMorgan-algebra: DeMorganAlgebra nat:
Lemmas referenced :  sq_stable__all nat_wf isect_wf fset-member_wf int-deq_wf sq_stable__uall sq_stable__fset-member fset-member_witness squash_wf sq_stable_from_decidable f-subset_wf decidable__f-subset dM-point-subtype dM-dma-hom-invariant dM-lift_wf dma-hom_wf dM_wf all_wf names_wf equal_wf dM_inc_wf true_wf names-subtype iff_weakening_equal dM-lift-inc lattice-point_wf subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity bounded-lattice-structure_wf bounded-lattice-axioms_wf uall_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf names-hom_wf set_wf fset_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis sqequalRule lambdaEquality applyEquality because_Cache hypothesisEquality setElimination rename independent_functionElimination lambdaFormation dependent_functionElimination isect_memberEquality equalityTransitivity equalitySymmetry imageMemberEquality baseClosed imageElimination independent_isectElimination setEquality universeEquality natural_numberEquality productElimination instantiate productEquality cumulativity axiomEquality intEquality

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[J:\{J:fset(\mBbbN{})|  I  \msubseteq{}  J\}  ].  \mforall{}[h:I  {}\mrightarrow{}  J].
    \mforall{}[x:Point(dM(I))].  ((dM-lift(I;J;h)  x)  =  x)  supposing  \mforall{}i:names(I).  ((h  i)  =  <i>)



Date html generated: 2017_10_05-AM-01_00_42
Last ObjectModification: 2017_07_28-AM-09_25_51

Theory : cubical!type!theory


Home Index