Nuprl Lemma : dM-dma-hom-invariant

[I:fset(ℕ)]. ∀[J:{J:fset(ℕ)| I ⊆ J} ]. ∀[h:dma-hom(dM(J);dM(I))].
  ∀[x:Point(dM(I))]. ((h x) x ∈ Point(dM(I))) supposing ∀i:names(I). ((h <i>= <i> ∈ Point(dM(I)))


Proof




Definitions occuring in Statement :  dM_inc: <x> dM: dM(I) names: names(I) dma-hom: dma-hom(dma1;dma2) lattice-point: Point(l) f-subset: xs ⊆ ys fset: fset(T) int-deq: IntDeq nat: uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] set: {x:A| B[x]}  apply: a equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T dma-hom: dma-hom(dma1;dma2) uimplies: supposing a all: x:A. B[x] and: P ∧ Q cand: c∧ B subtype_rel: A ⊆B DeMorgan-algebra: DeMorganAlgebra so_lambda: λ2x.t[x] prop: guard: {T} so_apply: x[s] bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) implies:  Q sq_stable: SqStable(P) squash: T nat: true: True iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  dM-hom-invariant names_wf lattice-point_wf dM_wf subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity bounded-lattice-structure_wf bounded-lattice-axioms_wf uall_wf equal_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf all_wf dM_inc_wf names-subtype sq_stable_from_decidable f-subset_wf nat_wf int-deq_wf decidable__f-subset dma-hom_wf set_wf fset_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self squash_wf true_wf dma-neg_wf DeMorgan-algebra_wf dM_opp_wf iff_weakening_equal dma-neg-dM_inc
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality setElimination rename independent_isectElimination lambdaFormation dependent_functionElimination independent_pairFormation sqequalRule isect_memberEquality axiomEquality applyEquality instantiate lambdaEquality productEquality cumulativity universeEquality because_Cache independent_functionElimination imageMemberEquality baseClosed imageElimination intEquality natural_numberEquality equalitySymmetry hyp_replacement equalityTransitivity productElimination

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[J:\{J:fset(\mBbbN{})|  I  \msubseteq{}  J\}  ].  \mforall{}[h:dma-hom(dM(J);dM(I))].
    \mforall{}[x:Point(dM(I))].  ((h  x)  =  x)  supposing  \mforall{}i:names(I).  ((h  <i>)  =  <i>)



Date html generated: 2017_10_05-AM-01_00_38
Last ObjectModification: 2017_07_28-AM-09_25_50

Theory : cubical!type!theory


Home Index