Nuprl Lemma : dM-hom-invariant
∀[I:fset(ℕ)]. ∀[J:{J:fset(ℕ)| I ⊆ J} ]. ∀[h:Hom(dM(J);dM(I))].
  ∀[x:Point(dM(I))]. ((h x) = x ∈ Point(dM(I))) 
  supposing ∀i:names(I). (((h <i>) = <i> ∈ Point(dM(I))) ∧ ((h <1-i>) = <1-i> ∈ Point(dM(I))))
Proof
Definitions occuring in Statement : 
dM_opp: <1-x>
, 
dM_inc: <x>
, 
dM: dM(I)
, 
names: names(I)
, 
bounded-lattice-hom: Hom(l1;l2)
, 
lattice-point: Point(l)
, 
f-subset: xs ⊆ ys
, 
fset: fset(T)
, 
int-deq: IntDeq
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
guard: {T}
, 
deq: EqDecider(T)
, 
lattice-point: Point(l)
, 
record-select: r.x
, 
dM: dM(I)
, 
free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq)
, 
mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n)
, 
record-update: r[x := v]
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
bfalse: ff
, 
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq)
, 
free-dist-lattice: free-dist-lattice(T; eq)
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
btrue: tt
, 
bool: 𝔹
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
assert: ↑b
, 
rev_implies: P 
⇐ Q
, 
prop: ℙ
, 
true: True
, 
DeMorgan-algebra: DeMorganAlgebra
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
bounded-lattice-hom: Hom(l1;l2)
, 
lattice-hom: Hom(l1;l2)
, 
nat: ℕ
, 
bdd-lattice: BoundedLattice
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
top: Top
, 
union-deq: union-deq(A;B;a;b)
, 
free-dml-deq: free-dml-deq(T;eq)
, 
free-dl-inc: free-dl-inc(x)
, 
fset-singleton: {x}
, 
cons: [a / b]
, 
nil: []
, 
it: ⋅
, 
dM_inc: <x>
, 
dminc: <i>
, 
dM_opp: <1-x>
, 
dmopp: <1-i>
Lemmas referenced : 
dM-hom-basis, 
dM-point-subtype, 
sq_stable_from_decidable, 
f-subset_wf, 
nat_wf, 
int-deq_wf, 
decidable__f-subset, 
dM_wf, 
bdd-distributive-lattice-subtype-bdd-lattice, 
DeMorgan-algebra-subtype, 
subtype_rel_transitivity, 
DeMorgan-algebra_wf, 
bdd-distributive-lattice_wf, 
bdd-lattice_wf, 
free-dml-deq_wf, 
names_wf, 
names-deq_wf, 
equal_wf, 
squash_wf, 
true_wf, 
dM-basis, 
lattice-point_wf, 
subtype_rel_set, 
DeMorgan-algebra-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
DeMorgan-algebra-structure-subtype, 
bounded-lattice-structure_wf, 
bounded-lattice-axioms_wf, 
uall_wf, 
lattice-meet_wf, 
lattice-join_wf, 
DeMorgan-algebra-axioms_wf, 
all_wf, 
dM_inc_wf, 
names-subtype, 
strong-subtype-deq-subtype, 
strong-subtype-set3, 
le_wf, 
strong-subtype-self, 
dM_opp_wf, 
bounded-lattice-hom_wf, 
set_wf, 
fset_wf, 
lattice-fset-join_wf, 
decidable_wf, 
mk-DeMorgan-algebra-equal-bounded-lattice, 
free-DeMorgan-lattice_wf, 
dM-point, 
fset-image_wf, 
deq_wf, 
deq-fset_wf, 
union-deq_wf, 
free-dl-point, 
lattice-fset-meet_wf, 
deq-implies
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
hypothesisEquality, 
applyEquality, 
independent_isectElimination, 
sqequalRule, 
independent_functionElimination, 
dependent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
instantiate, 
hyp_replacement, 
equalitySymmetry, 
lambdaEquality, 
equalityTransitivity, 
universeEquality, 
natural_numberEquality, 
productEquality, 
cumulativity, 
isect_memberEquality, 
axiomEquality, 
intEquality, 
voidElimination, 
voidEquality, 
lambdaFormation, 
dependent_set_memberEquality, 
productElimination, 
functionEquality, 
unionEquality, 
unionElimination
Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[J:\{J:fset(\mBbbN{})|  I  \msubseteq{}  J\}  ].  \mforall{}[h:Hom(dM(J);dM(I))].
    \mforall{}[x:Point(dM(I))].  ((h  x)  =  x)  supposing  \mforall{}i:names(I).  (((h  <i>)  =  <i>)  \mwedge{}  ((h  ə-i>)  =  ə-i>))
Date html generated:
2018_05_23-AM-08_28_33
Last ObjectModification:
2018_05_20-PM-05_37_04
Theory : cubical!type!theory
Home
Index