Nuprl Lemma : dM-hom-invariant

[I:fset(ℕ)]. ∀[J:{J:fset(ℕ)| I ⊆ J} ]. ∀[h:Hom(dM(J);dM(I))].
  ∀[x:Point(dM(I))]. ((h x) x ∈ Point(dM(I))) 
  supposing ∀i:names(I). (((h <i>= <i> ∈ Point(dM(I))) ∧ ((h <1-i>= <1-i> ∈ Point(dM(I))))


Proof




Definitions occuring in Statement :  dM_opp: <1-x> dM_inc: <x> dM: dM(I) names: names(I) bounded-lattice-hom: Hom(l1;l2) lattice-point: Point(l) f-subset: xs ⊆ ys fset: fset(T) int-deq: IntDeq nat: uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] and: P ∧ Q set: {x:A| B[x]}  apply: a equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B implies:  Q all: x:A. B[x] sq_stable: SqStable(P) squash: T guard: {T} deq: EqDecider(T) lattice-point: Point(l) record-select: r.x dM: dM(I) free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) free-dist-lattice: free-dist-lattice(T; eq) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) btrue: tt bool: 𝔹 iff: ⇐⇒ Q and: P ∧ Q assert: b rev_implies:  Q prop: true: True DeMorgan-algebra: DeMorganAlgebra so_lambda: λ2x.t[x] so_apply: x[s] bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) nat: bdd-lattice: BoundedLattice bdd-distributive-lattice: BoundedDistributiveLattice top: Top union-deq: union-deq(A;B;a;b) free-dml-deq: free-dml-deq(T;eq) free-dl-inc: free-dl-inc(x) fset-singleton: {x} cons: [a b] nil: [] it: dM_inc: <x> dminc: <i> dM_opp: <1-x> dmopp: <1-i>
Lemmas referenced :  dM-hom-basis dM-point-subtype sq_stable_from_decidable f-subset_wf nat_wf int-deq_wf decidable__f-subset dM_wf bdd-distributive-lattice-subtype-bdd-lattice DeMorgan-algebra-subtype subtype_rel_transitivity DeMorgan-algebra_wf bdd-distributive-lattice_wf bdd-lattice_wf free-dml-deq_wf names_wf names-deq_wf equal_wf squash_wf true_wf dM-basis lattice-point_wf subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype bounded-lattice-structure_wf bounded-lattice-axioms_wf uall_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf all_wf dM_inc_wf names-subtype strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self dM_opp_wf bounded-lattice-hom_wf set_wf fset_wf lattice-fset-join_wf decidable_wf mk-DeMorgan-algebra-equal-bounded-lattice free-DeMorgan-lattice_wf dM-point fset-image_wf deq_wf deq-fset_wf union-deq_wf free-dl-point lattice-fset-meet_wf deq-implies
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename because_Cache hypothesis hypothesisEquality applyEquality independent_isectElimination sqequalRule independent_functionElimination dependent_functionElimination imageMemberEquality baseClosed imageElimination instantiate hyp_replacement equalitySymmetry lambdaEquality equalityTransitivity universeEquality natural_numberEquality productEquality cumulativity isect_memberEquality axiomEquality intEquality voidElimination voidEquality lambdaFormation dependent_set_memberEquality productElimination functionEquality unionEquality unionElimination

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[J:\{J:fset(\mBbbN{})|  I  \msubseteq{}  J\}  ].  \mforall{}[h:Hom(dM(J);dM(I))].
    \mforall{}[x:Point(dM(I))].  ((h  x)  =  x)  supposing  \mforall{}i:names(I).  (((h  <i>)  =  <i>)  \mwedge{}  ((h  ə-i>)  =  ə-i>))



Date html generated: 2018_05_23-AM-08_28_33
Last ObjectModification: 2018_05_20-PM-05_37_04

Theory : cubical!type!theory


Home Index