Nuprl Lemma : mk-DeMorgan-algebra-equal-bounded-lattice

[L:BoundedLatticeStructure]. ∀[n:Top].  (mk-DeMorgan-algebra(L;n) L ∈ BoundedLatticeStructure)


Proof




Definitions occuring in Statement :  mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) bounded-lattice-structure: BoundedLatticeStructure uall: [x:A]. B[x] top: Top equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) bounded-lattice-structure: BoundedLatticeStructure record+: record+ all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt subtype_rel: A ⊆B uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  sq_type: SQType(T) guard: {T} record-select: r.x top: Top eq_atom: =a y bfalse: ff lattice-point: Point(l) iff: ⇐⇒ Q not: ¬A rev_implies:  Q false: False lattice-meet: a ∧ b lattice-join: a ∨ b lattice-1: 1 lattice-0: 0 prop: record: record(x.T[x]) record-update: r[x := v]
Lemmas referenced :  istype-top bounded-lattice-structure_wf eq_atom_wf uiff_transitivity equal-wf-base bool_wf atom_subtype_base assert_wf eqtt_to_assert assert_of_eq_atom subtype_base_sq rec_select_update_lemma istype-void lattice-point_wf bounded-lattice-structure-subtype iff_transitivity bnot_wf not_wf iff_weakening_uiff eqff_to_assert assert_of_bnot istype-assert lattice-meet_wf lattice-join_wf lattice-1_wf lattice-0_wf equal_wf subtype_rel_self top-subtype-record
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut hypothesis extract_by_obid sqequalRule sqequalHypSubstitution isect_memberEquality_alt isectElimination thin hypothesisEquality axiomEquality isectIsTypeImplies inhabitedIsType universeIsType equalitySymmetry dependentIntersectionEqElimination dependentIntersection_memberEquality functionExtensionality tokenEquality lambdaFormation_alt unionElimination equalityElimination baseApply closedConclusion baseClosed applyEquality atomEquality because_Cache independent_functionElimination productElimination independent_isectElimination instantiate cumulativity dependent_functionElimination equalityTransitivity voidElimination independent_pairFormation equalityIsType4 functionIsType equalityIsType1 impliesFunctionality voidEquality isect_memberEquality lambdaFormation functionEquality universeEquality dependentIntersectionElimination

Latex:
\mforall{}[L:BoundedLatticeStructure].  \mforall{}[n:Top].    (mk-DeMorgan-algebra(L;n)  =  L)



Date html generated: 2019_10_31-AM-07_22_37
Last ObjectModification: 2018_11_12-AM-09_22_15

Theory : lattices


Home Index