Nuprl Lemma : dM-basis
∀[I:fset(ℕ)]. ∀[x:Point(dM(I))].  (x = \/(λs./\(λx.free-dl-inc(x)"(s))"(x)) ∈ Point(dM(I)))
Proof
Definitions occuring in Statement : 
dM: dM(I)
, 
names-deq: NamesDeq
, 
names: names(I)
, 
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq)
, 
free-dl-inc: free-dl-inc(x)
, 
lattice-fset-join: \/(s)
, 
lattice-fset-meet: /\(s)
, 
lattice-point: Point(l)
, 
fset-image: f"(s)
, 
deq-fset: deq-fset(eq)
, 
fset: fset(T)
, 
union-deq: union-deq(A;B;a;b)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
lambda: λx.A[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq)
, 
subtype_rel: A ⊆r B
, 
DeMorgan-algebra: DeMorganAlgebra
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
guard: {T}
, 
uimplies: b supposing a
, 
so_apply: x[s]
, 
dM: dM(I)
, 
top: Top
Lemmas referenced : 
free-dl-basis, 
names_wf, 
union-deq_wf, 
names-deq_wf, 
lattice-point_wf, 
dM_wf, 
subtype_rel_set, 
DeMorgan-algebra-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
DeMorgan-algebra-structure-subtype, 
subtype_rel_transitivity, 
bounded-lattice-structure_wf, 
bounded-lattice-axioms_wf, 
uall_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
DeMorgan-algebra-axioms_wf, 
fset_wf, 
nat_wf, 
free-dma-point
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
unionEquality, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
sqequalRule, 
instantiate, 
lambdaEquality, 
productEquality, 
independent_isectElimination, 
cumulativity, 
universeEquality, 
because_Cache, 
isect_memberEquality, 
axiomEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[x:Point(dM(I))].    (x  =  \mbackslash{}/(\mlambda{}s./\mbackslash{}(\mlambda{}x.free-dl-inc(x)"(s))"(x)))
Date html generated:
2016_05_18-AM-11_58_29
Last ObjectModification:
2015_12_28-PM-03_09_17
Theory : cubical!type!theory
Home
Index