Nuprl Lemma : dM-basis

[I:fset(ℕ)]. ∀[x:Point(dM(I))].  (x \/(λs./\(λx.free-dl-inc(x)"(s))"(x)) ∈ Point(dM(I)))


Proof




Definitions occuring in Statement :  dM: dM(I) names-deq: NamesDeq names: names(I) free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) free-dl-inc: free-dl-inc(x) lattice-fset-join: \/(s) lattice-fset-meet: /\(s) lattice-point: Point(l) fset-image: f"(s) deq-fset: deq-fset(eq) fset: fset(T) union-deq: union-deq(A;B;a;b) nat: uall: [x:A]. B[x] lambda: λx.A[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) subtype_rel: A ⊆B DeMorgan-algebra: DeMorganAlgebra so_lambda: λ2x.t[x] prop: and: P ∧ Q guard: {T} uimplies: supposing a so_apply: x[s] dM: dM(I) top: Top
Lemmas referenced :  free-dl-basis names_wf union-deq_wf names-deq_wf lattice-point_wf dM_wf subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity bounded-lattice-structure_wf bounded-lattice-axioms_wf uall_wf equal_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf fset_wf nat_wf free-dma-point
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin unionEquality hypothesisEquality hypothesis applyEquality sqequalRule instantiate lambdaEquality productEquality independent_isectElimination cumulativity universeEquality because_Cache isect_memberEquality axiomEquality voidElimination voidEquality

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[x:Point(dM(I))].    (x  =  \mbackslash{}/(\mlambda{}s./\mbackslash{}(\mlambda{}x.free-dl-inc(x)"(s))"(x)))



Date html generated: 2016_05_18-AM-11_58_29
Last ObjectModification: 2015_12_28-PM-03_09_17

Theory : cubical!type!theory


Home Index