Nuprl Lemma : dM-hom-basis

[I:fset(ℕ)]. ∀[x:Point(dM(I))]. ∀[l:BoundedLattice].
  ∀eq:EqDecider(Point(l)). ∀[h:Hom(dM(I);l)]. ((h x) \/(λs./\(λx.(h free-dl-inc(x))"(s))"(x)) ∈ Point(l))


Proof




Definitions occuring in Statement :  dM: dM(I) names-deq: NamesDeq names: names(I) free-dl-inc: free-dl-inc(x) lattice-fset-join: \/(s) lattice-fset-meet: /\(s) bounded-lattice-hom: Hom(l1;l2) bdd-lattice: BoundedLattice lattice-point: Point(l) fset-image: f"(s) deq-fset: deq-fset(eq) fset: fset(T) union-deq: union-deq(A;B;a;b) deq: EqDecider(T) nat: uall: [x:A]. B[x] all: x:A. B[x] apply: a lambda: λx.A[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) prop: squash: T top: Top true: True subtype_rel: A ⊆B DeMorgan-algebra: DeMorganAlgebra so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a bdd-lattice: BoundedLattice and: P ∧ Q guard: {T} dM: dM(I) free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) implies:  Q bdd-distributive-lattice: BoundedDistributiveLattice iff: ⇐⇒ Q rev_implies:  Q free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) free-dml-deq: free-dml-deq(T;eq) lattice-point: Point(l) record-select: r.x free-dist-lattice: free-dist-lattice(T; eq) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) compose: g
Lemmas referenced :  dM-basis equal_wf squash_wf true_wf dM-point bounded-lattice-hom_wf dM_wf subtype_rel_set bounded-lattice-structure_wf DeMorgan-algebra-structure-subtype deq_wf lattice-point_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf bdd-lattice_wf DeMorgan-algebra-structure_wf subtype_rel_transitivity uall_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf fset_wf nat_wf free-DeMorgan-lattice_wf names_wf names-deq_wf bdd-distributive-lattice_wf mk-DeMorgan-algebra-equal-bounded-lattice lattice-hom-fset-join bdd-distributive-lattice-subtype-bdd-lattice free-dml-deq_wf lattice-hom-fset-meet deq-implies iff_weakening_equal lattice-fset-join_wf fset-image_wf deq-fset_wf union-deq_wf lattice-fset-meet_wf free-dl-inc_wf all_wf decidable_wf fset-image-compose assert_wf fset-antichain_wf strong-subtype-deq-subtype strong-subtype-set2 subtype_rel-equal free-dl-point
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaFormation applyLambdaEquality applyEquality setElimination rename hyp_replacement equalitySymmetry sqequalRule lambdaEquality imageElimination equalityTransitivity universeEquality because_Cache isect_memberEquality voidElimination voidEquality natural_numberEquality imageMemberEquality baseClosed instantiate independent_isectElimination productEquality cumulativity dependent_functionElimination axiomEquality independent_functionElimination productElimination unionEquality setEquality functionEquality

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[x:Point(dM(I))].  \mforall{}[l:BoundedLattice].
    \mforall{}eq:EqDecider(Point(l)).  \mforall{}[h:Hom(dM(I);l)].  ((h  x)  =  \mbackslash{}/(\mlambda{}s./\mbackslash{}(\mlambda{}x.(h  free-dl-inc(x))"(s))"(x)))



Date html generated: 2017_10_05-AM-01_00_18
Last ObjectModification: 2017_07_28-AM-09_25_42

Theory : cubical!type!theory


Home Index