Nuprl Lemma : dM-lift_wf2

[I,J:fset(ℕ)]. ∀[f:I ⟶ J].  (dM-lift(I;J;f) ∈ Point(dM(J)) ⟶ Point(dM(I)))


Proof




Definitions occuring in Statement :  dM-lift: dM-lift(I;J;f) names-hom: I ⟶ J dM: dM(I) lattice-point: Point(l) fset: fset(T) nat: uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B dma-hom: dma-hom(dma1;dma2) bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) all: x:A. B[x] so_lambda: λ2x.t[x] DeMorgan-algebra: DeMorganAlgebra prop: and: P ∧ Q guard: {T} uimplies: supposing a so_apply: x[s] names-hom: I ⟶ J
Lemmas referenced :  dM-lift_wf dma-hom_wf dM_wf all_wf names_wf equal_wf lattice-point_wf subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity bounded-lattice-structure_wf bounded-lattice-axioms_wf uall_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf dM_inc_wf names-hom_wf fset_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality lambdaEquality setElimination rename setEquality dependent_functionElimination sqequalRule instantiate productEquality cumulativity because_Cache independent_isectElimination axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality

Latex:
\mforall{}[I,J:fset(\mBbbN{})].  \mforall{}[f:I  {}\mrightarrow{}  J].    (dM-lift(I;J;f)  \mmember{}  Point(dM(J))  {}\mrightarrow{}  Point(dM(I)))



Date html generated: 2018_05_23-AM-08_27_39
Last ObjectModification: 2018_05_20-PM-05_35_42

Theory : cubical!type!theory


Home Index