Nuprl Lemma : istype-cubical-term

[X:j⊢]. ∀[A:{X ⊢ _}].  istype({X ⊢ _:A})


Proof




Definitions occuring in Statement :  cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet istype: istype(T) uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a
Lemmas referenced :  cubical-term-eqcd cubical-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt universeIsType cut hypothesisEquality introduction extract_by_obid sqequalHypSubstitution isectElimination thin equalityTransitivity hypothesis equalitySymmetry independent_isectElimination instantiate

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].    istype(\{X  \mvdash{}  \_:A\})



Date html generated: 2020_05_20-PM-01_51_29
Last ObjectModification: 2020_04_19-AM-11_45_36

Theory : cubical!type!theory


Home Index