Nuprl Lemma : composition-op_wf
∀[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. (Gamma ⊢ CompOp(A) ∈ 𝕌{[i' | j']})
Proof
Definitions occuring in Statement :
composition-op: Gamma ⊢ CompOp(A)
,
cubical-type: {X ⊢ _}
,
cubical_set: CubicalSet
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
subtype_rel: A ⊆r B
Lemmas referenced :
composition-op_wf1,
cubical_set_cumulativity-i-j,
cubical-type-cumulativity2,
cubical-type_wf,
cubical_set_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation_alt,
introduction,
cut,
thin,
instantiate,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
hypothesisEquality,
applyEquality,
hypothesis,
sqequalRule,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
universeIsType,
isect_memberEquality_alt,
isectIsTypeImplies,
inhabitedIsType
Latex:
\mforall{}[Gamma:j\mvdash{}]. \mforall{}[A:\{Gamma \mvdash{} \_\}]. (Gamma \mvdash{} CompOp(A) \mmember{} \mBbbU{}\{[i' | j']\})
Date html generated:
2020_05_20-PM-03_49_31
Last ObjectModification:
2020_04_09-PM-01_36_36
Theory : cubical!type!theory
Home
Index