Nuprl Lemma : composition-op_wf

[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}].  (Gamma ⊢ CompOp(A) ∈ 𝕌{[i' j']})


Proof




Definitions occuring in Statement :  composition-op: Gamma ⊢ CompOp(A) cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B
Lemmas referenced :  composition-op_wf1 cubical_set_cumulativity-i-j cubical-type-cumulativity2 cubical-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut thin instantiate extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality applyEquality hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry universeIsType isect_memberEquality_alt isectIsTypeImplies inhabitedIsType

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].    (Gamma  \mvdash{}  CompOp(A)  \mmember{}  \mBbbU{}\{[i'  |  j']\})



Date html generated: 2020_05_20-PM-03_49_31
Last ObjectModification: 2020_04_09-PM-01_36_36

Theory : cubical!type!theory


Home Index