Nuprl Lemma : composition-op_wf1

[Gamma:j⊢]. ∀[A:{Gamma ⊢_}].  (Gamma ⊢ CompOp(A) ∈ 𝕌{[i j]'})


Proof




Definitions occuring in Statement :  composition-op: Gamma ⊢ CompOp(A) cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  composition-op: Gamma ⊢ CompOp(A) comp-op: comp-op(Gamma;A) uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B prop:
Lemmas referenced :  comp-op_wf cubical_set_cumulativity-i-j cubical-type-cumulativity2 composition-uniformity_wf cubical-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation_alt introduction cut setEquality thin instantiate extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality applyEquality hypothesis cumulativity axiomEquality equalityTransitivity equalitySymmetry universeIsType isect_memberEquality_alt isectIsTypeImplies inhabitedIsType

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}j  \_\}].    (Gamma  \mvdash{}  CompOp(A)  \mmember{}  \mBbbU{}\{[i  |  j]'\})



Date html generated: 2020_05_20-PM-03_49_19
Last ObjectModification: 2020_04_09-PM-01_10_36

Theory : cubical!type!theory


Home Index