Nuprl Lemma : sq_stable__cubical-path-condition

[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[I:fset(ℕ)]. ∀[i:{i:ℕ| ¬i ∈ I} ]. ∀[rho:Gamma(I+i)]. ∀[phi:𝔽(I)].
[u:{I+i,s(phi) ⊢ _:(A)<rho> iota}]. ∀[a0:A((i0)(rho))].
  SqStable(cubical-path-condition(Gamma;A;I;i;rho;phi;u;a0))


Proof




Definitions occuring in Statement :  cubical-path-condition: cubical-path-condition(Gamma;A;I;i;rho;phi;u;a0) cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type-at: A(a) cubical-type: {X ⊢ _} subset-iota: iota cubical-subset: I,psi face-presheaf: 𝔽 csm-comp: F context-map: <rho> formal-cube: formal-cube(I) cube-set-restriction: f(s) I_cube: A(I) cubical_set: CubicalSet nc-0: (i0) nc-s: s add-name: I+i fset-member: a ∈ s fset: fset(T) int-deq: IntDeq nat: sq_stable: SqStable(P) uall: [x:A]. B[x] not: ¬A set: {x:A| B[x]} 
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical-path-condition: cubical-path-condition(Gamma;A;I;i;rho;phi;u;a0) sq_stable: SqStable(P) implies:  Q all: x:A. B[x] nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False and: P ∧ Q prop: subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] name-morph-satisfies: (psi f) 1 squash: T bdd-distributive-lattice: BoundedDistributiveLattice I_cube: A(I) functor-ob: ob(F) pi1: fst(t) face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q cube-set-restriction: f(s) pi2: snd(t) context-map: <rho> subset-iota: iota csm-comp: F csm-ap: (s)x compose: g functor-arrow: arrow(F)
Lemmas referenced :  istype-cubical-type-at cube-set-restriction_wf add-name_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf istype-le nc-0_wf cubical-term_wf cubical-subset_wf face-presheaf_wf2 nc-s_wf f-subset-add-name csm-ap-type_wf cubical_set_cumulativity-i-j cubical-type-cumulativity csm-comp_wf formal-cube_wf1 subset-iota_wf context-map_wf I_cube_wf istype-nat fset-member_wf nat_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self istype-void fset_wf cubical-type_wf cubical_set_wf cubical-type-ap-morph_wf cubical-subset-I_cube-member cubical-term-at_wf member-cubical-subset-I_cube nh-comp_wf equal_wf squash_wf true_wf istype-universe lattice-point_wf face_lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf lattice-meet_wf lattice-join_wf fl-morph-restriction subtype_rel_self iff_weakening_equal names-hom_wf nh-id-right nh-comp-assoc s-comp-nc-0 csm-ap-type-at cubical-type-at_wf cube-set-restriction-comp sq_stable__all sq_stable__equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule sqequalHypSubstitution lambdaEquality_alt dependent_functionElimination thin hypothesisEquality axiomEquality hypothesis functionIsTypeImplies inhabitedIsType extract_by_obid isectElimination dependent_set_memberEquality_alt setElimination rename natural_numberEquality unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality Error :memTop,  independent_pairFormation universeIsType voidElimination because_Cache isect_memberEquality_alt isectIsTypeImplies instantiate applyEquality setIsType functionIsType intEquality lambdaFormation_alt productElimination equalityTransitivity equalitySymmetry hyp_replacement imageElimination universeEquality imageMemberEquality baseClosed productEquality cumulativity isectEquality functionEquality

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[I:fset(\mBbbN{})].  \mforall{}[i:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  I\}  ].  \mforall{}[rho:Gamma(I+i)].  \mforall{}[phi:\mBbbF{}(I)].
\mforall{}[u:\{I+i,s(phi)  \mvdash{}  \_:(A)<rho>  o  iota\}].  \mforall{}[a0:A((i0)(rho))].
    SqStable(cubical-path-condition(Gamma;A;I;i;rho;phi;u;a0))



Date html generated: 2020_05_20-PM-03_45_14
Last ObjectModification: 2020_04_09-AM-11_00_26

Theory : cubical!type!theory


Home Index