Nuprl Lemma : nh-id-right
∀I,J:fset(ℕ). ∀f:I ⟶ J.  (1 ⋅ f = f ∈ I ⟶ J)
Proof
Definitions occuring in Statement : 
nh-comp: g ⋅ f
, 
nh-id: 1
, 
names-hom: I ⟶ J
, 
fset: fset(T)
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
nh-id: 1
, 
nh-comp: g ⋅ f
, 
names-hom: I ⟶ J
, 
dM_inc: <x>
, 
dma-lift-compose: dma-lift-compose(I;J;eqi;eqj;f;g)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
subtype_rel: A ⊆r B
, 
dM: dM(I)
, 
DeMorgan-algebra: DeMorganAlgebra
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
guard: {T}
, 
uimplies: b supposing a
, 
so_apply: x[s]
, 
dma-hom: dma-hom(dma1;dma2)
, 
bounded-lattice-hom: Hom(l1;l2)
, 
lattice-hom: Hom(l1;l2)
, 
implies: P 
⇒ Q
, 
compose: f o g
, 
squash: ↓T
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
free-dma-lift_wf, 
names_wf, 
names-deq_wf, 
free-DeMorgan-algebra_wf, 
free-dma-point, 
free-dml-deq_wf, 
lattice-point_wf, 
dM_wf, 
subtype_rel_set, 
DeMorgan-algebra-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
DeMorgan-algebra-structure-subtype, 
subtype_rel_transitivity, 
bounded-lattice-structure_wf, 
bounded-lattice-axioms_wf, 
uall_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
DeMorgan-algebra-axioms_wf, 
set_wf, 
dma-hom_wf, 
all_wf, 
dminc_wf, 
names-hom_wf, 
fset_wf, 
nat_wf, 
squash_wf, 
true_wf, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
sqequalRule, 
functionExtensionality, 
sqequalHypSubstitution, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
thin, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
applyEquality, 
lambdaEquality, 
instantiate, 
productEquality, 
independent_isectElimination, 
cumulativity, 
universeEquality, 
setElimination, 
rename, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
productElimination
Latex:
\mforall{}I,J:fset(\mBbbN{}).  \mforall{}f:I  {}\mrightarrow{}  J.    (1  \mcdot{}  f  =  f)
Date html generated:
2017_10_05-AM-01_01_49
Last ObjectModification:
2017_07_28-AM-09_25_59
Theory : cubical!type!theory
Home
Index