Nuprl Lemma : nh-comp-assoc

I,J,K,H:fset(ℕ). ∀f:I ⟶ J. ∀g:J ⟶ K. ∀h:K ⟶ H.  (h ⋅ g ⋅ h ⋅ g ⋅ f ∈ I ⟶ H)


Proof




Definitions occuring in Statement :  nh-comp: g ⋅ f names-hom: I ⟶ J fset: fset(T) nat: all: x:A. B[x] equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] names-hom: I ⟶ J dM: dM(I) nh-comp: g ⋅ f uall: [x:A]. B[x] member: t ∈ T
Lemmas referenced :  dma-lift-compose-assoc names_wf names-deq_wf names-hom_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalHypSubstitution lemma_by_obid isectElimination thin hypothesisEquality hypothesis because_Cache

Latex:
\mforall{}I,J,K,H:fset(\mBbbN{}).  \mforall{}f:I  {}\mrightarrow{}  J.  \mforall{}g:J  {}\mrightarrow{}  K.  \mforall{}h:K  {}\mrightarrow{}  H.    (h  \mcdot{}  g  \mcdot{}  f  =  h  \mcdot{}  g  \mcdot{}  f)



Date html generated: 2016_05_18-AM-11_59_42
Last ObjectModification: 2015_12_28-PM-03_06_59

Theory : cubical!type!theory


Home Index