Nuprl Lemma : dma-lift-compose-assoc
∀[I,J,K,H:Type]. ∀[eqi:EqDecider(I)]. ∀[eqj:EqDecider(J)]. ∀[eqk:EqDecider(K)].
∀[f:J ⟶ Point(free-DeMorgan-algebra(I;eqi))]. ∀[g:K ⟶ Point(free-DeMorgan-algebra(J;eqj))].
∀[h:H ⟶ Point(free-DeMorgan-algebra(K;eqk))].
  (dma-lift-compose(I;K;eqi;eqk;dma-lift-compose(I;J;eqi;eqj;f;g);h)
  = dma-lift-compose(I;J;eqi;eqj;f;dma-lift-compose(J;K;eqj;eqk;g;h))
  ∈ (H ⟶ Point(free-DeMorgan-algebra(I;eqi))))
Proof
Definitions occuring in Statement : 
dma-lift-compose: dma-lift-compose(I;J;eqi;eqj;f;g)
, 
free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq)
, 
lattice-point: Point(l)
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
dma-lift-compose: dma-lift-compose(I;J;eqi;eqj;f;g)
, 
compose: f o g
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
top: Top
, 
DeMorgan-algebra: DeMorganAlgebra
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
guard: {T}
, 
uimplies: b supposing a
, 
so_apply: x[s]
, 
dma-hom: dma-hom(dma1;dma2)
, 
bounded-lattice-hom: Hom(l1;l2)
, 
lattice-hom: Hom(l1;l2)
, 
implies: P 
⇒ Q
, 
squash: ↓T
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
lattice-point_wf, 
free-DeMorgan-algebra_wf, 
deq_wf, 
free-dma-point, 
free-dml-deq_wf, 
dminc_wf, 
free-dma-lift-unique2, 
compose_wf, 
subtype_rel_set, 
DeMorgan-algebra-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
DeMorgan-algebra-structure-subtype, 
subtype_rel_transitivity, 
bounded-lattice-structure_wf, 
bounded-lattice-axioms_wf, 
uall_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
DeMorgan-algebra-axioms_wf, 
free-dma-lift_wf, 
dma-hom_wf, 
all_wf, 
set_wf, 
compose-dma-hom, 
squash_wf, 
true_wf, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
functionExtensionality, 
sqequalRule, 
hypothesisEquality, 
hypothesis, 
functionEquality, 
cumulativity, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
applyEquality, 
because_Cache, 
isect_memberEquality, 
axiomEquality, 
lambdaFormation, 
voidElimination, 
voidEquality, 
universeEquality, 
dependent_functionElimination, 
instantiate, 
lambdaEquality, 
productEquality, 
independent_isectElimination, 
setElimination, 
rename, 
setEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
productElimination
Latex:
\mforall{}[I,J,K,H:Type].  \mforall{}[eqi:EqDecider(I)].  \mforall{}[eqj:EqDecider(J)].  \mforall{}[eqk:EqDecider(K)].
\mforall{}[f:J  {}\mrightarrow{}  Point(free-DeMorgan-algebra(I;eqi))].  \mforall{}[g:K  {}\mrightarrow{}  Point(free-DeMorgan-algebra(J;eqj))].
\mforall{}[h:H  {}\mrightarrow{}  Point(free-DeMorgan-algebra(K;eqk))].
    (dma-lift-compose(I;K;eqi;eqk;dma-lift-compose(I;J;eqi;eqj;f;g);h)
    =  dma-lift-compose(I;J;eqi;eqj;f;dma-lift-compose(J;K;eqj;eqk;g;h)))
Date html generated:
2017_10_05-AM-00_43_13
Last ObjectModification:
2017_07_28-AM-09_17_52
Theory : lattices
Home
Index