Nuprl Lemma : dma-lift-compose-assoc

[I,J,K,H:Type]. ∀[eqi:EqDecider(I)]. ∀[eqj:EqDecider(J)]. ∀[eqk:EqDecider(K)].
[f:J ⟶ Point(free-DeMorgan-algebra(I;eqi))]. ∀[g:K ⟶ Point(free-DeMorgan-algebra(J;eqj))].
[h:H ⟶ Point(free-DeMorgan-algebra(K;eqk))].
  (dma-lift-compose(I;K;eqi;eqk;dma-lift-compose(I;J;eqi;eqj;f;g);h)
  dma-lift-compose(I;J;eqi;eqj;f;dma-lift-compose(J;K;eqj;eqk;g;h))
  ∈ (H ⟶ Point(free-DeMorgan-algebra(I;eqi))))


Proof




Definitions occuring in Statement :  dma-lift-compose: dma-lift-compose(I;J;eqi;eqj;f;g) free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) lattice-point: Point(l) deq: EqDecider(T) uall: [x:A]. B[x] function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T dma-lift-compose: dma-lift-compose(I;J;eqi;eqj;f;g) compose: g subtype_rel: A ⊆B all: x:A. B[x] top: Top DeMorgan-algebra: DeMorganAlgebra so_lambda: λ2x.t[x] prop: and: P ∧ Q guard: {T} uimplies: supposing a so_apply: x[s] dma-hom: dma-hom(dma1;dma2) bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) implies:  Q squash: T true: True iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  lattice-point_wf free-DeMorgan-algebra_wf deq_wf free-dma-point free-dml-deq_wf dminc_wf free-dma-lift-unique2 compose_wf subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity bounded-lattice-structure_wf bounded-lattice-axioms_wf uall_wf equal_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf free-dma-lift_wf dma-hom_wf all_wf set_wf compose-dma-hom squash_wf true_wf iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut functionExtensionality sqequalRule hypothesisEquality hypothesis functionEquality cumulativity extract_by_obid sqequalHypSubstitution isectElimination thin applyEquality because_Cache isect_memberEquality axiomEquality lambdaFormation voidElimination voidEquality universeEquality dependent_functionElimination instantiate lambdaEquality productEquality independent_isectElimination setElimination rename setEquality equalityTransitivity equalitySymmetry independent_functionElimination imageElimination natural_numberEquality imageMemberEquality baseClosed productElimination

Latex:
\mforall{}[I,J,K,H:Type].  \mforall{}[eqi:EqDecider(I)].  \mforall{}[eqj:EqDecider(J)].  \mforall{}[eqk:EqDecider(K)].
\mforall{}[f:J  {}\mrightarrow{}  Point(free-DeMorgan-algebra(I;eqi))].  \mforall{}[g:K  {}\mrightarrow{}  Point(free-DeMorgan-algebra(J;eqj))].
\mforall{}[h:H  {}\mrightarrow{}  Point(free-DeMorgan-algebra(K;eqk))].
    (dma-lift-compose(I;K;eqi;eqk;dma-lift-compose(I;J;eqi;eqj;f;g);h)
    =  dma-lift-compose(I;J;eqi;eqj;f;dma-lift-compose(J;K;eqj;eqk;g;h)))



Date html generated: 2017_10_05-AM-00_43_13
Last ObjectModification: 2017_07_28-AM-09_17_52

Theory : lattices


Home Index