Nuprl Lemma : compose-dma-hom
∀[dma1,dma2,dma3:DeMorganAlgebra]. ∀[f:dma-hom(dma1;dma2)]. ∀[g:dma-hom(dma2;dma3)].  (g o f ∈ dma-hom(dma1;dma3))
Proof
Definitions occuring in Statement : 
dma-hom: dma-hom(dma1;dma2)
, 
DeMorgan-algebra: DeMorganAlgebra
, 
compose: f o g
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
dma-hom: dma-hom(dma1;dma2)
, 
compose: f o g
, 
squash: ↓T
, 
prop: ℙ
, 
bounded-lattice-hom: Hom(l1;l2)
, 
lattice-hom: Hom(l1;l2)
, 
DeMorgan-algebra: DeMorganAlgebra
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
Lemmas referenced : 
equal_wf, 
squash_wf, 
true_wf, 
dma-neg_wf, 
iff_weakening_equal, 
uall_wf, 
dma-hom_wf, 
DeMorgan-algebra_wf, 
compose-bounded-lattice-hom, 
bdd-distributive-lattice-subtype-bdd-lattice, 
DeMorgan-algebra-subtype, 
subtype_rel_transitivity, 
bdd-distributive-lattice_wf, 
bdd-lattice_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
dependent_set_memberEquality, 
sqequalRule, 
applyEquality, 
lambdaEquality, 
imageElimination, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
universeEquality, 
because_Cache, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
axiomEquality, 
dependent_functionElimination, 
isect_memberEquality, 
instantiate
Latex:
\mforall{}[dma1,dma2,dma3:DeMorganAlgebra].  \mforall{}[f:dma-hom(dma1;dma2)].  \mforall{}[g:dma-hom(dma2;dma3)].
    (g  o  f  \mmember{}  dma-hom(dma1;dma3))
Date html generated:
2017_10_05-AM-00_42_28
Last ObjectModification:
2017_07_28-AM-09_17_17
Theory : lattices
Home
Index