Nuprl Lemma : fl-morph-restriction

[I,J,K:fset(ℕ)]. ∀[f:I ⟶ J]. ∀[g:J ⟶ K]. ∀[phi:𝔽(K)].  ((g(phi))<f> g ⋅ f(phi) ∈ 𝔽(I))


Proof




Definitions occuring in Statement :  face-presheaf: 𝔽 fl-morph: <f> cube-set-restriction: f(s) I_cube: A(I) nh-comp: g ⋅ f names-hom: I ⟶ J fset: fset(T) nat: uall: [x:A]. B[x] apply: a equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] prop: squash: T fl-morph: <f> fl-lift: fl-lift(T;eq;L;eqL;f0;f1) face-lattice-property free-dist-lattice-with-constraints-property lattice-extend-wc: lattice-extend-wc(L;eq;eqL;f;ac) lattice-extend: lattice-extend(L;eq;eqL;f;ac) lattice-fset-join: \/(s) reduce: reduce(f;k;as) list_ind: list_ind fset-image: f"(s) f-union: f-union(domeq;rngeq;s;x.g[x]) list_accum: list_accum cube-set-restriction: f(s) pi2: snd(t) face-presheaf: 𝔽 true: True
Lemmas referenced :  cube-set-restriction-comp face-presheaf_wf2 equal_wf squash_wf true_wf istype-universe I_cube_wf cube-set-restriction_wf names-hom_wf fset_wf nat_wf face-lattice-property free-dist-lattice-with-constraints-property
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesis hypothesisEquality hyp_replacement equalitySymmetry sqequalRule applyEquality instantiate lambdaEquality_alt imageElimination isectElimination equalityTransitivity universeIsType universeEquality natural_numberEquality imageMemberEquality baseClosed isect_memberEquality_alt axiomEquality isectIsTypeImplies inhabitedIsType

Latex:
\mforall{}[I,J,K:fset(\mBbbN{})].  \mforall{}[f:I  {}\mrightarrow{}  J].  \mforall{}[g:J  {}\mrightarrow{}  K].  \mforall{}[phi:\mBbbF{}(K)].    ((g(phi))<f>  =  g  \mcdot{}  f(phi))



Date html generated: 2020_05_20-PM-01_44_57
Last ObjectModification: 2020_04_19-PM-01_55_27

Theory : cubical!type!theory


Home Index