Nuprl Lemma : face-lattice-property
∀T:Type. ∀eq:EqDecider(T). ∀L:BoundedDistributiveLattice. ∀eqL:EqDecider(Point(L)). ∀f0,f1:T ⟶ Point(L).
  ∃g:Hom(face-lattice(T;eq);L) [(∀x:T. (((g (x=0)) = (f0 x) ∈ Point(L)) ∧ ((g (x=1)) = (f1 x) ∈ Point(L))))] 
  supposing ∀x:T. (f0 x ∧ f1 x = 0 ∈ Point(L))
Proof
Definitions occuring in Statement : 
face-lattice1: (x=1)
, 
face-lattice0: (x=0)
, 
face-lattice: face-lattice(T;eq)
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
bounded-lattice-hom: Hom(l1;l2)
, 
lattice-0: 0
, 
lattice-meet: a ∧ b
, 
lattice-point: Point(l)
, 
deq: EqDecider(T)
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
sq_exists: ∃x:A [B[x]]
, 
and: P ∧ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
face-lattice: face-lattice(T;eq)
, 
exists: ∃x:A. B[x]
, 
sq_exists: ∃x:A [B[x]]
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
subtype_rel: A ⊆r B
, 
bounded-lattice-hom: Hom(l1;l2)
, 
lattice-hom: Hom(l1;l2)
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
face-lattice-constraints: face-lattice-constraints(x)
, 
uiff: uiff(P;Q)
, 
fset-pair: {a,b}
, 
fset-image: f"(s)
, 
f-union: f-union(domeq;rngeq;s;x.g[x])
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
empty-fset: {}
, 
true: True
, 
lattice-fset-meet: /\(s)
, 
squash: ↓T
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
bdd-lattice: BoundedLattice
, 
compose: f o g
Lemmas referenced : 
free-dist-lattice-with-constraints-property, 
union-deq_wf, 
face-lattice-constraints_wf, 
fset-member_wf, 
fset_wf, 
deq-fset_wf, 
lattice-point_wf, 
face-lattice0_wf, 
face-lattice1_wf, 
lattice-meet_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
equal_wf, 
lattice-join_wf, 
lattice-0_wf, 
deq_wf, 
bdd-distributive-lattice_wf, 
istype-universe, 
member-fset-singleton, 
fset-pair_wf, 
list_accum_cons_lemma, 
list_accum_nil_lemma, 
lattice-fset-meet_wf, 
bdd-distributive-lattice-subtype-bdd-lattice, 
decidable-equal-deq, 
fset-image_wf, 
fset-union_wf, 
empty-fset_wf, 
fset-singleton_wf, 
reduce_nil_lemma, 
squash_wf, 
true_wf, 
lattice-fset-meet-union, 
lattice-fset-meet-singleton, 
subtype_rel_self, 
iff_weakening_equal, 
lattice-1-meet, 
face-lattice0-is-inc, 
face-lattice1-is-inc
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
isect_memberFormation_alt, 
cut, 
introduction, 
sqequalRule, 
sqequalHypSubstitution, 
lambdaEquality_alt, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
axiomEquality, 
hypothesis, 
functionIsTypeImplies, 
inhabitedIsType, 
rename, 
extract_by_obid, 
isectElimination, 
unionEquality, 
unionIsType, 
universeIsType, 
equalityTransitivity, 
equalitySymmetry, 
unionElimination, 
applyEquality, 
equalityIstype, 
independent_functionElimination, 
independent_isectElimination, 
because_Cache, 
productElimination, 
dependent_set_memberEquality_alt, 
independent_pairFormation, 
functionIsType, 
productIsType, 
setElimination, 
instantiate, 
productEquality, 
cumulativity, 
isectEquality, 
universeEquality, 
inlEquality_alt, 
inrEquality_alt, 
Error :memTop, 
hyp_replacement, 
applyLambdaEquality, 
natural_numberEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}T:Type.  \mforall{}eq:EqDecider(T).  \mforall{}L:BoundedDistributiveLattice.  \mforall{}eqL:EqDecider(Point(L)).
\mforall{}f0,f1:T  {}\mrightarrow{}  Point(L).
    \mexists{}g:Hom(face-lattice(T;eq);L)  [(\mforall{}x:T.  (((g  (x=0))  =  (f0  x))  \mwedge{}  ((g  (x=1))  =  (f1  x))))] 
    supposing  \mforall{}x:T.  (f0  x  \mwedge{}  f1  x  =  0)
Date html generated:
2020_05_20-AM-08_51_37
Last ObjectModification:
2020_02_03-PM-03_08_10
Theory : lattices
Home
Index