Nuprl Lemma : face-lattice-constraints_wf
∀[T:Type]. ∀[x:T + T].  (face-lattice-constraints(x) ∈ fset(fset(T + T)))
Proof
Definitions occuring in Statement : 
face-lattice-constraints: face-lattice-constraints(x)
, 
fset: fset(T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
union: left + right
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
face-lattice-constraints: face-lattice-constraints(x)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
Lemmas referenced : 
fset-singleton_wf, 
fset_wf, 
fset-pair_wf, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
thin, 
because_Cache, 
lambdaFormation, 
unionElimination, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
unionEquality, 
inlEquality, 
inrEquality, 
dependent_functionElimination, 
independent_functionElimination, 
axiomEquality, 
isect_memberEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[x:T  +  T].    (face-lattice-constraints(x)  \mmember{}  fset(fset(T  +  T)))
Date html generated:
2020_05_20-AM-08_50_35
Last ObjectModification:
2018_08_21-PM-02_01_38
Theory : lattices
Home
Index