Nuprl Lemma : face-lattice-constraints_wf

[T:Type]. ∀[x:T T].  (face-lattice-constraints(x) ∈ fset(fset(T T)))


Proof




Definitions occuring in Statement :  face-lattice-constraints: face-lattice-constraints(x) fset: fset(T) uall: [x:A]. B[x] member: t ∈ T union: left right universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T face-lattice-constraints: face-lattice-constraints(x) all: x:A. B[x] implies:  Q prop:
Lemmas referenced :  fset-singleton_wf fset_wf fset-pair_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule hypothesisEquality equalityTransitivity hypothesis equalitySymmetry thin because_Cache lambdaFormation unionElimination extract_by_obid sqequalHypSubstitution isectElimination unionEquality inlEquality inrEquality dependent_functionElimination independent_functionElimination axiomEquality isect_memberEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[x:T  +  T].    (face-lattice-constraints(x)  \mmember{}  fset(fset(T  +  T)))



Date html generated: 2020_05_20-AM-08_50_35
Last ObjectModification: 2018_08_21-PM-02_01_38

Theory : lattices


Home Index