Nuprl Lemma : face-lattice1-is-inc
∀T:Type. ∀eq:EqDecider(T). ∀x:T.  ((x=1) ~ free-dlwc-inc(union-deq(T;T;eq;eq);a.face-lattice-constraints(a);inr x ))
Proof
Definitions occuring in Statement : 
face-lattice1: (x=1)
, 
face-lattice-constraints: face-lattice-constraints(x)
, 
free-dlwc-inc: free-dlwc-inc(eq;a.Cs[a];x)
, 
union-deq: union-deq(A;B;a;b)
, 
deq: EqDecider(T)
, 
all: ∀x:A. B[x]
, 
inr: inr x 
, 
universe: Type
, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
face-lattice-constraints: face-lattice-constraints(x)
, 
free-dlwc-inc: free-dlwc-inc(eq;a.Cs[a];x)
, 
face-lattice1: (x=1)
, 
fset-singleton: {x}
, 
fset-filter: {x ∈ s | P[x]}
, 
fset-null: fset-null(s)
, 
member: t ∈ T
, 
top: Top
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
deq-f-subset: deq-f-subset(eq)
, 
isl: isl(x)
, 
decidable__f-subset, 
decidable__all_fset, 
decidable_functionality, 
iff_preserves_decidability, 
iff_weakening_uiff, 
fset-all-iff, 
decidable__assert, 
null: null(as)
, 
filter: filter(P;l)
, 
reduce: reduce(f;k;as)
, 
list_ind: list_ind, 
fset-pair: {a,b}
, 
cons: [a / b]
, 
ifthenelse: if b then t else f fi 
, 
bnot: ¬bb
, 
decidable__fset-member, 
assert-deq-fset-member, 
deq-fset-member: a ∈b s
, 
deq-member: x ∈b L
, 
bor: p ∨bq
, 
union-deq: union-deq(A;B;a;b)
, 
sumdeq: sumdeq(a;b)
, 
bfalse: ff
, 
nil: []
, 
it: ⋅
, 
btrue: tt
, 
sq_type: SQType(T)
, 
implies: P 
⇒ Q
, 
guard: {T}
Lemmas referenced : 
filter_cons_lemma, 
istype-void, 
filter_nil_lemma, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
bfalse_wf, 
null_nil_lemma, 
deq_wf, 
istype-universe, 
decidable__f-subset, 
decidable__all_fset, 
decidable_functionality, 
iff_preserves_decidability, 
iff_weakening_uiff, 
fset-all-iff, 
decidable__assert, 
decidable__fset-member, 
assert-deq-fset-member
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
sqequalRule, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality_alt, 
voidElimination, 
hypothesis, 
instantiate, 
isectElimination, 
cumulativity, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
universeIsType, 
hypothesisEquality, 
universeEquality
Latex:
\mforall{}T:Type.  \mforall{}eq:EqDecider(T).  \mforall{}x:T.
    ((x=1)  \msim{}  free-dlwc-inc(union-deq(T;T;eq;eq);a.face-lattice-constraints(a);inr  x  ))
Date html generated:
2020_05_20-AM-08_50_59
Last ObjectModification:
2018_11_08-PM-06_00_38
Theory : lattices
Home
Index