Nuprl Lemma : free-dist-lattice-with-constraints-property

[T:Type]
  ∀eq:EqDecider(T)
    ∀[Cs:T ⟶ fset(fset(T))]
      ∀L:BoundedDistributiveLattice. ∀eqL:EqDecider(Point(L)). ∀f:T ⟶ Point(L).
        ∃g:Hom(free-dist-lattice-with-constraints(T;eq;x.Cs[x]);L)
         (f (g x.free-dlwc-inc(eq;a.Cs[a];x))) ∈ (T ⟶ Point(L))) 
        supposing ∀x:T. ∀c:fset(T).  (c ∈ Cs[x]  (/\(f"(c)) 0 ∈ Point(L)))


Proof




Definitions occuring in Statement :  free-dlwc-inc: free-dlwc-inc(eq;a.Cs[a];x) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) lattice-fset-meet: /\(s) bdd-distributive-lattice: BoundedDistributiveLattice bounded-lattice-hom: Hom(l1;l2) lattice-0: 0 lattice-point: Point(l) fset-image: f"(s) deq-fset: deq-fset(eq) fset-member: a ∈ s fset: fset(T) deq: EqDecider(T) compose: g uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] implies:  Q lambda: λx.A[x] function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] uimplies: supposing a member: t ∈ T implies:  Q exists: x:A. B[x] so_lambda: λ2x.t[x] so_apply: x[s] compose: g squash: T prop: subtype_rel: A ⊆B true: True guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) bdd-distributive-lattice: BoundedDistributiveLattice
Lemmas referenced :  lattice-extend-is-hom-constrained equal_wf squash_wf true_wf lattice-point_wf lattice-extend-dlwc-inc subtype_rel_self iff_weakening_equal compose_wf free-dist-lattice-with-constraints_wf free-dlwc-inc_wf fset_wf fset-member_wf deq-fset_wf lattice-fset-meet_wf bdd-distributive-lattice-subtype-bdd-lattice decidable-equal-deq fset-image_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-axioms_wf lattice-meet_wf lattice-join_wf bounded-lattice-structure-subtype lattice-0_wf deq_wf bdd-distributive-lattice_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt cut introduction sqequalRule sqequalHypSubstitution lambdaEquality_alt dependent_functionElimination thin hypothesisEquality axiomEquality hypothesis functionIsTypeImplies inhabitedIsType rename dependent_pairFormation_alt extract_by_obid isectElimination applyEquality universeIsType independent_isectElimination functionExtensionality_alt imageElimination equalityTransitivity equalitySymmetry because_Cache natural_numberEquality imageMemberEquality baseClosed instantiate productElimination independent_functionElimination equalityIstype setElimination functionIsType productEquality cumulativity isectEquality universeEquality

Latex:
\mforall{}[T:Type]
    \mforall{}eq:EqDecider(T)
        \mforall{}[Cs:T  {}\mrightarrow{}  fset(fset(T))]
            \mforall{}L:BoundedDistributiveLattice.  \mforall{}eqL:EqDecider(Point(L)).  \mforall{}f:T  {}\mrightarrow{}  Point(L).
                \mexists{}g:Hom(free-dist-lattice-with-constraints(T;eq;x.Cs[x]);L)
                  (f  =  (g  o  (\mlambda{}x.free-dlwc-inc(eq;a.Cs[a];x)))) 
                supposing  \mforall{}x:T.  \mforall{}c:fset(T).    (c  \mmember{}  Cs[x]  {}\mRightarrow{}  (/\mbackslash{}(f"(c))  =  0))



Date html generated: 2020_05_20-AM-08_50_28
Last ObjectModification: 2020_01_03-PM-09_26_08

Theory : lattices


Home Index