Nuprl Lemma : free-dist-lattice-with-constraints_wf

[T:Type]. ∀[eq:EqDecider(T)]. ∀[Cs:T ⟶ fset(fset(T))].
  (free-dist-lattice-with-constraints(T;eq;x.Cs[x]) ∈ BoundedDistributiveLattice)


Proof




Definitions occuring in Statement :  free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) bdd-distributive-lattice: BoundedDistributiveLattice fset: fset(T) deq: EqDecider(T) uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a and: P ∧ Q cand: c∧ B all: x:A. B[x] implies:  Q prop: assert: b ifthenelse: if then else fi  fset-contains-none: fset-contains-none(eq;s;x.Cs[x]) fset-contains-none-of: fset-contains-none-of(eq;s;cs) fset-null: fset-null(s) null: null(as) fset-filter: {x ∈ P[x]} filter: filter(P;l) reduce: reduce(f;k;as) list_ind: list_ind f-union: f-union(domeq;rngeq;s;x.g[x]) list_accum: list_accum empty-fset: {} nil: [] it: btrue: tt true: True
Lemmas referenced :  constrained-antichain-lattice_wf fset-contains-none_wf fset_wf fset-contains-none-closed-downward assert_wf f-subset_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality lambdaEquality because_Cache applyEquality hypothesis independent_isectElimination lambdaFormation dependent_functionElimination independent_functionElimination independent_pairFormation natural_numberEquality axiomEquality equalityTransitivity equalitySymmetry functionEquality isect_memberEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[Cs:T  {}\mrightarrow{}  fset(fset(T))].
    (free-dist-lattice-with-constraints(T;eq;x.Cs[x])  \mmember{}  BoundedDistributiveLattice)



Date html generated: 2020_05_20-AM-08_48_15
Last ObjectModification: 2015_12_28-PM-01_59_06

Theory : lattices


Home Index