Nuprl Lemma : constrained-antichain-lattice_wf

[T:Type]. ∀[eq:EqDecider(T)]. ∀[P:fset(T) ⟶ 𝔹].
  constrained-antichain-lattice(T;eq;P) ∈ BoundedDistributiveLattice 
  supposing (∀x,y:fset(T).  (y ⊆  (↑(P x))  (↑(P y)))) ∧ (↑(P {}))


Proof




Definitions occuring in Statement :  constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) bdd-distributive-lattice: BoundedDistributiveLattice empty-fset: {} f-subset: xs ⊆ ys fset: fset(T) deq: EqDecider(T) assert: b bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] implies:  Q and: P ∧ Q member: t ∈ T apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  guard: {T} squash: T rev_implies:  Q iff: ⇐⇒ Q greatest-lower-bound: greatest-lower-bound(T;x,y.R[x; y];a;b;c) implies:  Q subtype_rel: A ⊆B fset-ac-le: fset-ac-le(eq;ac1;ac2) least-upper-bound: least-upper-bound(T;x,y.R[x; y];a;b;c) so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] fset-all: fset-all(s;x.P[x]) true: True btrue: tt it: nil: [] empty-fset: {} list_ind: list_ind reduce: reduce(f;k;as) filter: filter(P;l) fset-filter: {x ∈ P[x]} null: null(as) fset-null: fset-null(s) fset-pairwise: fset-pairwise(x,y.R[x; y];s) fset-antichain: fset-antichain(eq;ac) ifthenelse: if then else fi  assert: b cand: c∧ B all: x:A. B[x] so_apply: x[s] so_lambda: λ2x.t[x] prop: constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) and: P ∧ Q uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] uiff: uiff(P;Q) top: Top
Lemmas referenced :  deq_wf iff_weakening_equal fset-ac-le-distributive-constrained true_wf squash_wf equal_wf f-subset_wf iff_wf all_wf bool_wf fset-ac-le-singleton-empty set_wf deq-f-subset_wf bnot_wf fset-filter_wf fset-null_wf assert_witness fset-ac-order-constrained fset-ac-le_wf empty-fset_wf fset-constrained-ac-lub_wf fset-constrained-ac-glb_wf fset-all_wf fset-antichain_wf assert_wf fset_wf mk-bounded-distributive-lattice-from-order fset-member_wf member-fset-singleton deq-fset_wf fset-all-iff fset-antichain-singleton fset-singleton_wf fset-constrained-ac-lub-is-lub fset-constrained-ac-glb-is-glb empty-fset-ac-le
Rules used in proof :  axiomEquality universeEquality baseClosed imageMemberEquality imageElimination functionEquality equalitySymmetry equalityTransitivity instantiate isect_memberEquality independent_functionElimination independent_pairEquality dependent_functionElimination independent_isectElimination independent_pairFormation natural_numberEquality dependent_set_memberEquality because_Cache rename setElimination lambdaFormation functionExtensionality applyEquality lambdaEquality sqequalRule productEquality hypothesis hypothesisEquality cumulativity setEquality isectElimination extract_by_obid thin productElimination sqequalHypSubstitution cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution applyLambdaEquality hyp_replacement voidEquality voidElimination

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[P:fset(T)  {}\mrightarrow{}  \mBbbB{}].
    constrained-antichain-lattice(T;eq;P)  \mmember{}  BoundedDistributiveLattice 
    supposing  (\mforall{}x,y:fset(T).    (y  \msubseteq{}  x  {}\mRightarrow{}  (\muparrow{}(P  x))  {}\mRightarrow{}  (\muparrow{}(P  y))))  \mwedge{}  (\muparrow{}(P  \{\}))



Date html generated: 2020_05_20-AM-08_47_51
Last ObjectModification: 2020_02_04-PM-02_01_54

Theory : lattices


Home Index