Nuprl Lemma : constrained-antichain-lattice_wf
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[P:fset(T) ⟶ 𝔹].
  constrained-antichain-lattice(T;eq;P) ∈ BoundedDistributiveLattice 
  supposing (∀x,y:fset(T).  (y ⊆ x ⇒ (↑(P x)) ⇒ (↑(P y)))) ∧ (↑(P {}))
Proof
Definitions occuring in Statement : 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P), 
bdd-distributive-lattice: BoundedDistributiveLattice, 
empty-fset: {}, 
f-subset: xs ⊆ ys, 
fset: fset(T), 
deq: EqDecider(T), 
assert: ↑b, 
bool: 𝔹, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q, 
member: t ∈ T, 
apply: f a, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
guard: {T}, 
squash: ↓T, 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
greatest-lower-bound: greatest-lower-bound(T;x,y.R[x; y];a;b;c), 
implies: P ⇒ Q, 
subtype_rel: A ⊆r B, 
fset-ac-le: fset-ac-le(eq;ac1;ac2), 
least-upper-bound: least-upper-bound(T;x,y.R[x; y];a;b;c), 
so_apply: x[s1;s2], 
so_lambda: λ2x y.t[x; y], 
fset-all: fset-all(s;x.P[x]), 
true: True, 
btrue: tt, 
it: ⋅, 
nil: [], 
empty-fset: {}, 
list_ind: list_ind, 
reduce: reduce(f;k;as), 
filter: filter(P;l), 
fset-filter: {x ∈ s | P[x]}, 
null: null(as), 
fset-null: fset-null(s), 
fset-pairwise: fset-pairwise(x,y.R[x; y];s), 
fset-antichain: fset-antichain(eq;ac), 
ifthenelse: if b then t else f fi , 
assert: ↑b, 
cand: A c∧ B, 
all: ∀x:A. B[x], 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
prop: ℙ, 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P), 
and: P ∧ Q, 
uimplies: b supposing a, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
uiff: uiff(P;Q), 
top: Top
Lemmas referenced : 
deq_wf, 
iff_weakening_equal, 
fset-ac-le-distributive-constrained, 
true_wf, 
squash_wf, 
equal_wf, 
f-subset_wf, 
iff_wf, 
all_wf, 
bool_wf, 
fset-ac-le-singleton-empty, 
set_wf, 
deq-f-subset_wf, 
bnot_wf, 
fset-filter_wf, 
fset-null_wf, 
assert_witness, 
fset-ac-order-constrained, 
fset-ac-le_wf, 
empty-fset_wf, 
fset-constrained-ac-lub_wf, 
fset-constrained-ac-glb_wf, 
fset-all_wf, 
fset-antichain_wf, 
assert_wf, 
fset_wf, 
mk-bounded-distributive-lattice-from-order, 
fset-member_wf, 
member-fset-singleton, 
deq-fset_wf, 
fset-all-iff, 
fset-antichain-singleton, 
fset-singleton_wf, 
fset-constrained-ac-lub-is-lub, 
fset-constrained-ac-glb-is-glb, 
empty-fset-ac-le
Rules used in proof : 
axiomEquality, 
universeEquality, 
baseClosed, 
imageMemberEquality, 
imageElimination, 
functionEquality, 
equalitySymmetry, 
equalityTransitivity, 
instantiate, 
isect_memberEquality, 
independent_functionElimination, 
independent_pairEquality, 
dependent_functionElimination, 
independent_isectElimination, 
independent_pairFormation, 
natural_numberEquality, 
dependent_set_memberEquality, 
because_Cache, 
rename, 
setElimination, 
lambdaFormation, 
functionExtensionality, 
applyEquality, 
lambdaEquality, 
sqequalRule, 
productEquality, 
hypothesis, 
hypothesisEquality, 
cumulativity, 
setEquality, 
isectElimination, 
extract_by_obid, 
thin, 
productElimination, 
sqequalHypSubstitution, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
applyLambdaEquality, 
hyp_replacement, 
voidEquality, 
voidElimination
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[P:fset(T)  {}\mrightarrow{}  \mBbbB{}].
    constrained-antichain-lattice(T;eq;P)  \mmember{}  BoundedDistributiveLattice 
    supposing  (\mforall{}x,y:fset(T).    (y  \msubseteq{}  x  {}\mRightarrow{}  (\muparrow{}(P  x))  {}\mRightarrow{}  (\muparrow{}(P  y))))  \mwedge{}  (\muparrow{}(P  \{\}))
Date html generated:
2020_05_20-AM-08_47_51
Last ObjectModification:
2020_02_04-PM-02_01_54
Theory : lattices
Home
Index