Nuprl Lemma : constrained-antichain-lattice_wf

āˆ€[T:Type]. āˆ€[eq:EqDecider(T)]. āˆ€[P:fset(T) āŸ¶ š”¹].
  constrained-antichain-lattice(T;eq;P) āˆˆ BoundedDistributiveLattice 
  supposing (āˆ€x,y:fset(T).  (y āІ ā‡’ (↑(P x)) ā‡’ (↑(P y)))) āˆ§ (↑(P {}))


Proof




Definitions occuring in Statement :  constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) bdd-distributive-lattice: BoundedDistributiveLattice empty-fset: {} f-subset: xs āІ ys fset: fset(T) deq: EqDecider(T) assert: ↑b bool: š”¹ uimplies: supposing a uall: āˆ€[x:A]. B[x] all: āˆ€x:A. B[x] implies: ⇒ Q and: P āˆ§ Q member: t āˆˆ T apply: a function: x:A āŸ¶ B[x] universe: Type
Definitions unfolded in proof :  guard: {T} squash: ↓T rev_implies: ⇐ Q iff: ⇐⇒ Q greatest-lower-bound: greatest-lower-bound(T;x,y.R[x; y];a;b;c) implies: ⇒ Q subtype_rel: A āІB fset-ac-le: fset-ac-le(eq;ac1;ac2) least-upper-bound: least-upper-bound(T;x,y.R[x; y];a;b;c) so_apply: x[s1;s2] so_lambda: Ī»2y.t[x; y] fset-all: fset-all(s;x.P[x]) true: True btrue: tt it: ā‹… nil: [] empty-fset: {} list_ind: list_ind reduce: reduce(f;k;as) filter: filter(P;l) fset-filter: {x āˆˆ P[x]} null: null(as) fset-null: fset-null(s) fset-pairwise: fset-pairwise(x,y.R[x; y];s) fset-antichain: fset-antichain(eq;ac) ifthenelse: if then else fi  assert: ↑b cand: c∧ B all: āˆ€x:A. B[x] so_apply: x[s] so_lambda: Ī»2x.t[x] prop: ā„™ constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) and: P āˆ§ Q uimplies: supposing a member: t āˆˆ T uall: āˆ€[x:A]. B[x] uiff: uiff(P;Q) top: Top
Lemmas referenced :  deq_wf iff_weakening_equal fset-ac-le-distributive-constrained true_wf squash_wf equal_wf f-subset_wf iff_wf all_wf bool_wf fset-ac-le-singleton-empty set_wf deq-f-subset_wf bnot_wf fset-filter_wf fset-null_wf assert_witness fset-ac-order-constrained fset-ac-le_wf empty-fset_wf fset-constrained-ac-lub_wf fset-constrained-ac-glb_wf fset-all_wf fset-antichain_wf assert_wf fset_wf mk-bounded-distributive-lattice-from-order fset-member_wf member-fset-singleton deq-fset_wf fset-all-iff fset-antichain-singleton fset-singleton_wf fset-constrained-ac-lub-is-lub fset-constrained-ac-glb-is-glb empty-fset-ac-le
Rules used in proof :  axiomEquality universeEquality baseClosed imageMemberEquality imageElimination functionEquality equalitySymmetry equalityTransitivity instantiate isect_memberEquality independent_functionElimination independent_pairEquality dependent_functionElimination independent_isectElimination independent_pairFormation natural_numberEquality dependent_set_memberEquality because_Cache rename setElimination lambdaFormation functionExtensionality applyEquality lambdaEquality sqequalRule productEquality hypothesis hypothesisEquality cumulativity setEquality isectElimination extract_by_obid thin productElimination sqequalHypSubstitution cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution applyLambdaEquality hyp_replacement voidEquality voidElimination

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[P:fset(T)  {}\mrightarrow{}  \mBbbB{}].
    constrained-antichain-lattice(T;eq;P)  \mmember{}  BoundedDistributiveLattice 
    supposing  (\mforall{}x,y:fset(T).    (y  \msubseteq{}  x  {}\mRightarrow{}  (\muparrow{}(P  x))  {}\mRightarrow{}  (\muparrow{}(P  y))))  \mwedge{}  (\muparrow{}(P  \{\}))



Date html generated: 2020_05_20-AM-08_47_51
Last ObjectModification: 2020_02_04-PM-02_01_54

Theory : lattices


Home Index