Nuprl Lemma : fset-ac-le-distributive-constrained
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[P:fset(T) ⟶ 𝔹].
  ∀[a,b,c:{ac:fset(fset(T))| (↑fset-antichain(eq;ac)) ∧ fset-all(ac;a.P[a])} ].
    (glb(P;a;lub(P;b;c))
    = lub(P;glb(P;a;b);glb(P;a;c))
    ∈ {ac:fset(fset(T))| (↑fset-antichain(eq;ac)) ∧ fset-all(ac;a.P[a])} ) 
  supposing ∀x,y:fset(T).  (y ⊆ x 
⇒ (↑(P x)) 
⇒ (↑(P y)))
Proof
Definitions occuring in Statement : 
fset-constrained-ac-glb: glb(P;ac1;ac2)
, 
fset-constrained-ac-lub: lub(P;ac1;ac2)
, 
fset-antichain: fset-antichain(eq;ac)
, 
fset-all: fset-all(s;x.P[x])
, 
f-subset: xs ⊆ ys
, 
fset: fset(T)
, 
deq: EqDecider(T)
, 
assert: ↑b
, 
bool: 𝔹
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
fset-all: fset-all(s;x.P[x])
, 
sq_stable: SqStable(P)
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
sq_type: SQType(T)
, 
f-proper-subset: xs ⊆≠ ys
, 
top: Top
, 
decidable: Dec(P)
, 
fset-constrained-ac-lub: lub(P;ac1;ac2)
, 
fset-ac-lub: fset-ac-lub(eq;ac1;ac2)
, 
or: P ∨ Q
, 
true: True
, 
fset-union: x ⋃ y
, 
l-union: as ⋃ bs
, 
reduce: reduce(f;k;as)
, 
list_ind: list_ind, 
squash: ↓T
, 
false: False
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
rev_uimplies: rev_uimplies(P;Q)
, 
uiff: uiff(P;Q)
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
fset-ac-le: fset-ac-le(eq;ac1;ac2)
, 
fset-constrained-ac-glb: glb(P;ac1;ac2)
, 
guard: {T}
, 
greatest-lower-bound: greatest-lower-bound(T;x,y.R[x; y];a;b;c)
, 
least-upper-bound: least-upper-bound(T;x,y.R[x; y];a;b;c)
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
implies: P 
⇒ Q
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
cand: A c∧ B
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
decidable__assert, 
sq_stable_from_decidable, 
equal_wf, 
bool_subtype_base, 
subtype_base_sq, 
assert_elim, 
f-subset_transitivity, 
member-fset-filter, 
assert-deq-f-subset, 
fset-extensionality, 
mem_empty_lemma, 
fset-member_witness, 
implies-member-fset-minimals, 
decidable__squash_exists_fset, 
decidable__f-proper-subset, 
member-fset-union, 
squash_wf, 
true_wf, 
istype-universe, 
fset-union-commutes, 
subtype_rel_self, 
iff_weakening_equal, 
assert-f-proper-subset-dec, 
iff_transitivity, 
f-proper-subset_wf, 
istype-void, 
member-fset-constrained-image-iff, 
member-f-union, 
istype-assert, 
assert_witness, 
equal-wf-T-base, 
not_wf, 
assert-fset-null, 
member-fset-minimals, 
assert_of_bnot, 
fset-member_wf, 
isect_wf, 
uall_wf, 
fset-union_wf, 
fset-constrained-image_wf, 
f-union_wf, 
f-proper-subset-dec_wf, 
fset-minimals_wf, 
iff_wf, 
deq-f-subset_wf, 
fset-filter_wf, 
fset-null_wf, 
bnot_wf, 
iff_weakening_uiff, 
deq-fset_wf, 
fset-all-iff, 
fset-ac-le-implies, 
fset-ac-le_transitivity, 
fset-constrained-ac-glb-is-glb, 
fset-constrained-ac-lub_wf, 
fset-ac-order-constrained, 
fset-ac-le_wf, 
least-upper-bound-unique, 
fset-constrained-ac-glb_wf, 
fset-constrained-ac-lub-is-lub, 
deq_wf, 
bool_wf, 
f-subset_wf, 
all_wf, 
set_wf, 
fset_wf, 
fset-all_wf, 
fset-antichain_wf, 
assert_wf
Rules used in proof : 
levelHypothesis, 
hyp_replacement, 
applyLambdaEquality, 
independent_pairEquality, 
unionElimination, 
instantiate, 
natural_numberEquality, 
Error :isect_memberFormation_alt, 
voidElimination, 
Error :functionIsTypeImplies, 
Error :isect_memberEquality_alt, 
Error :isectIsTypeImplies, 
Error :dependent_pairFormation_alt, 
imageMemberEquality, 
Error :functionIsType, 
Error :lambdaFormation_alt, 
Error :equalityIstype, 
Error :universeIsType, 
Error :lambdaEquality_alt, 
Error :inhabitedIsType, 
sqequalBase, 
Error :dependent_set_memberEquality_alt, 
Error :productIsType, 
imageElimination, 
baseClosed, 
addLevel, 
independent_functionElimination, 
productElimination, 
functionExtensionality, 
cumulativity, 
lambdaFormation, 
dependent_functionElimination, 
independent_isectElimination, 
setEquality, 
rename, 
setElimination, 
universeEquality, 
equalitySymmetry, 
equalityTransitivity, 
functionEquality, 
because_Cache, 
axiomEquality, 
isect_memberEquality, 
applyEquality, 
lambdaEquality, 
sqequalRule, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
productEquality, 
hypothesis, 
independent_pairFormation, 
dependent_set_memberEquality, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[P:fset(T)  {}\mrightarrow{}  \mBbbB{}].
    \mforall{}[a,b,c:\{ac:fset(fset(T))|  (\muparrow{}fset-antichain(eq;ac))  \mwedge{}  fset-all(ac;a.P[a])\}  ].
        (glb(P;a;lub(P;b;c))  =  lub(P;glb(P;a;b);glb(P;a;c))) 
    supposing  \mforall{}x,y:fset(T).    (y  \msubseteq{}  x  {}\mRightarrow{}  (\muparrow{}(P  x))  {}\mRightarrow{}  (\muparrow{}(P  y)))
Date html generated:
2019_06_20-PM-02_14_12
Last ObjectModification:
2019_06_20-PM-02_07_11
Theory : finite!sets
Home
Index