Nuprl Lemma : fset-ac-le-distributive-constrained

[T:Type]. ∀[eq:EqDecider(T)]. ∀[P:fset(T) ⟶ 𝔹].
  ∀[a,b,c:{ac:fset(fset(T))| (↑fset-antichain(eq;ac)) ∧ fset-all(ac;a.P[a])} ].
    (glb(P;a;lub(P;b;c))
    lub(P;glb(P;a;b);glb(P;a;c))
    ∈ {ac:fset(fset(T))| (↑fset-antichain(eq;ac)) ∧ fset-all(ac;a.P[a])} 
  supposing ∀x,y:fset(T).  (y ⊆  (↑(P x))  (↑(P y)))


Proof




Definitions occuring in Statement :  fset-constrained-ac-glb: glb(P;ac1;ac2) fset-constrained-ac-lub: lub(P;ac1;ac2) fset-antichain: fset-antichain(eq;ac) fset-all: fset-all(s;x.P[x]) f-subset: xs ⊆ ys fset: fset(T) deq: EqDecider(T) assert: b bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] implies:  Q and: P ∧ Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  fset-all: fset-all(s;x.P[x]) sq_stable: SqStable(P) btrue: tt ifthenelse: if then else fi  assert: b sq_type: SQType(T) f-proper-subset: xs ⊆≠ ys top: Top decidable: Dec(P) fset-constrained-ac-lub: lub(P;ac1;ac2) fset-ac-lub: fset-ac-lub(eq;ac1;ac2) or: P ∨ Q true: True fset-union: x ⋃ y l-union: as ⋃ bs reduce: reduce(f;k;as) list_ind: list_ind squash: T false: False exists: x:A. B[x] not: ¬A rev_uimplies: rev_uimplies(P;Q) uiff: uiff(P;Q) rev_implies:  Q iff: ⇐⇒ Q fset-ac-le: fset-ac-le(eq;ac1;ac2) fset-constrained-ac-glb: glb(P;ac1;ac2) guard: {T} greatest-lower-bound: greatest-lower-bound(T;x,y.R[x; y];a;b;c) least-upper-bound: least-upper-bound(T;x,y.R[x; y];a;b;c) subtype_rel: A ⊆B all: x:A. B[x] so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] implies:  Q so_apply: x[s] so_lambda: λ2x.t[x] prop: cand: c∧ B and: P ∧ Q uimplies: supposing a member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  decidable__assert sq_stable_from_decidable equal_wf bool_subtype_base subtype_base_sq assert_elim f-subset_transitivity member-fset-filter assert-deq-f-subset fset-extensionality mem_empty_lemma fset-member_witness implies-member-fset-minimals decidable__squash_exists_fset decidable__f-proper-subset member-fset-union squash_wf true_wf istype-universe fset-union-commutes subtype_rel_self iff_weakening_equal assert-f-proper-subset-dec iff_transitivity f-proper-subset_wf istype-void member-fset-constrained-image-iff member-f-union istype-assert assert_witness equal-wf-T-base not_wf assert-fset-null member-fset-minimals assert_of_bnot fset-member_wf isect_wf uall_wf fset-union_wf fset-constrained-image_wf f-union_wf f-proper-subset-dec_wf fset-minimals_wf iff_wf deq-f-subset_wf fset-filter_wf fset-null_wf bnot_wf iff_weakening_uiff deq-fset_wf fset-all-iff fset-ac-le-implies fset-ac-le_transitivity fset-constrained-ac-glb-is-glb fset-constrained-ac-lub_wf fset-ac-order-constrained fset-ac-le_wf least-upper-bound-unique fset-constrained-ac-glb_wf fset-constrained-ac-lub-is-lub deq_wf bool_wf f-subset_wf all_wf set_wf fset_wf fset-all_wf fset-antichain_wf assert_wf
Rules used in proof :  levelHypothesis hyp_replacement applyLambdaEquality independent_pairEquality unionElimination instantiate natural_numberEquality Error :isect_memberFormation_alt,  voidElimination Error :functionIsTypeImplies,  Error :isect_memberEquality_alt,  Error :isectIsTypeImplies,  Error :dependent_pairFormation_alt,  imageMemberEquality Error :functionIsType,  Error :lambdaFormation_alt,  Error :equalityIstype,  Error :universeIsType,  Error :lambdaEquality_alt,  Error :inhabitedIsType,  sqequalBase Error :dependent_set_memberEquality_alt,  Error :productIsType,  imageElimination baseClosed addLevel independent_functionElimination productElimination functionExtensionality cumulativity lambdaFormation dependent_functionElimination independent_isectElimination setEquality rename setElimination universeEquality equalitySymmetry equalityTransitivity functionEquality because_Cache axiomEquality isect_memberEquality applyEquality lambdaEquality sqequalRule hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid productEquality hypothesis independent_pairFormation dependent_set_memberEquality cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[P:fset(T)  {}\mrightarrow{}  \mBbbB{}].
    \mforall{}[a,b,c:\{ac:fset(fset(T))|  (\muparrow{}fset-antichain(eq;ac))  \mwedge{}  fset-all(ac;a.P[a])\}  ].
        (glb(P;a;lub(P;b;c))  =  lub(P;glb(P;a;b);glb(P;a;c))) 
    supposing  \mforall{}x,y:fset(T).    (y  \msubseteq{}  x  {}\mRightarrow{}  (\muparrow{}(P  x))  {}\mRightarrow{}  (\muparrow{}(P  y)))



Date html generated: 2019_06_20-PM-02_14_12
Last ObjectModification: 2019_06_20-PM-02_07_11

Theory : finite!sets


Home Index