Nuprl Lemma : decidable__f-proper-subset
∀[T:Type]. ∀eq:EqDecider(T). ∀xs,ys:fset(T).  Dec(xs ⊆≠ ys)
Proof
Definitions occuring in Statement : 
f-proper-subset: xs ⊆≠ ys
, 
fset: fset(T)
, 
deq: EqDecider(T)
, 
decidable: Dec(P)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
fset_wf, 
deq_wf, 
f-proper-subset_wf, 
assert_wf, 
f-proper-subset-dec_wf, 
decidable__assert, 
decidable_functionality, 
iff_weakening_uiff, 
assert-f-proper-subset-dec
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
universeEquality, 
dependent_functionElimination, 
independent_functionElimination, 
productElimination, 
independent_pairFormation
Latex:
\mforall{}[T:Type].  \mforall{}eq:EqDecider(T).  \mforall{}xs,ys:fset(T).    Dec(xs  \msubseteq{}\mneq{}  ys)
Date html generated:
2016_05_14-PM-03_42_01
Last ObjectModification:
2015_12_26-PM-06_40_00
Theory : finite!sets
Home
Index