Nuprl Lemma : decidable__f-proper-subset

[T:Type]. ∀eq:EqDecider(T). ∀xs,ys:fset(T).  Dec(xs ⊆≠ ys)


Proof




Definitions occuring in Statement :  f-proper-subset: xs ⊆≠ ys fset: fset(T) deq: EqDecider(T) decidable: Dec(P) uall: [x:A]. B[x] all: x:A. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T implies:  Q uiff: uiff(P;Q) and: P ∧ Q iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  fset_wf deq_wf f-proper-subset_wf assert_wf f-proper-subset-dec_wf decidable__assert decidable_functionality iff_weakening_uiff assert-f-proper-subset-dec
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis universeEquality dependent_functionElimination independent_functionElimination productElimination independent_pairFormation

Latex:
\mforall{}[T:Type].  \mforall{}eq:EqDecider(T).  \mforall{}xs,ys:fset(T).    Dec(xs  \msubseteq{}\mneq{}  ys)



Date html generated: 2016_05_14-PM-03_42_01
Last ObjectModification: 2015_12_26-PM-06_40_00

Theory : finite!sets


Home Index