Nuprl Lemma : implies-member-fset-minimals

[T:Type]
  ∀eq:EqDecider(T). ∀s:fset(fset(T)). ∀a:fset(T).
    (a ∈ s
     (∃z:fset(T). (z ∈ fset-minimals(x,y.f-proper-subset-dec(eq;x;y); s) ∧ z ⊆≠ a)))
     a ∈ fset-minimals(x,y.f-proper-subset-dec(eq;x;y); s))


Proof




Definitions occuring in Statement :  fset-minimals: fset-minimals(x,y.less[x; y]; s) f-proper-subset-dec: f-proper-subset-dec(eq;xs;ys) f-proper-subset: xs ⊆≠ ys deq-fset: deq-fset(eq) fset-member: a ∈ s fset: fset(T) deq: EqDecider(T) uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B guard: {T} decidable: Dec(P) or: P ∨ Q le: A ≤ B less_than': less_than'(a;b) uiff: uiff(P;Q) cand: c∧ B iff: ⇐⇒ Q rev_implies:  Q less_than: a < b squash: T
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf fset-member_witness deq-fset_wf fset-minimals_wf fset_wf f-proper-subset-dec_wf not_wf exists_wf fset-member_wf f-proper-subset_wf fset-size_wf decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma nat_wf add_nat_wf false_wf le_wf add-is-int-iff itermAdd_wf intformeq_wf int_term_value_add_lemma int_formula_prop_eq_lemma equal_wf decidable__lt deq_wf member-fset-minimals fset-all-iff bnot_wf iff_transitivity assert_wf iff_weakening_uiff assert_of_bnot assert-f-proper-subset-dec assert_witness fset-size-proper-subset f-proper-subset_transitivity
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination because_Cache cumulativity productEquality applyEquality equalityTransitivity equalitySymmetry applyLambdaEquality unionElimination dependent_set_memberEquality addEquality pointwiseFunctionality promote_hyp baseApply closedConclusion baseClosed productElimination universeEquality impliesFunctionality imageElimination

Latex:
\mforall{}[T:Type]
    \mforall{}eq:EqDecider(T).  \mforall{}s:fset(fset(T)).  \mforall{}a:fset(T).
        (a  \mmember{}  s
        {}\mRightarrow{}  (\mneg{}(\mexists{}z:fset(T).  (z  \mmember{}  fset-minimals(x,y.f-proper-subset-dec(eq;x;y);  s)  \mwedge{}  z  \msubseteq{}\mneq{}  a)))
        {}\mRightarrow{}  a  \mmember{}  fset-minimals(x,y.f-proper-subset-dec(eq;x;y);  s))



Date html generated: 2017_04_17-AM-09_23_30
Last ObjectModification: 2017_02_27-PM-05_25_29

Theory : finite!sets


Home Index