Nuprl Lemma : f-proper-subset_transitivity
∀[T:Type]. ∀eq:EqDecider(T). ∀as,bs,cs:fset(T).  (as ⊆≠ bs 
⇒ bs ⊆≠ cs 
⇒ as ⊆≠ cs)
Proof
Definitions occuring in Statement : 
f-proper-subset: xs ⊆≠ ys
, 
fset: fset(T)
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
f-proper-subset: xs ⊆≠ ys
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
prop: ℙ
, 
f-subset: xs ⊆ ys
, 
uimplies: b supposing a
, 
not: ¬A
, 
false: False
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
less_than: a < b
, 
squash: ↓T
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
Lemmas referenced : 
fset-size-proper-subset, 
f-proper-subset_wf, 
fset_wf, 
deq_wf, 
fset-member_witness, 
fset-member_wf, 
equal_wf, 
f-subset_transitivity, 
less_than_wf, 
fset-size_wf, 
nat_wf, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformless_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_functionElimination, 
independent_functionElimination, 
hypothesis, 
because_Cache, 
productElimination, 
independent_pairFormation, 
cumulativity, 
sqequalRule, 
lambdaEquality, 
independent_pairEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
voidElimination, 
universeEquality, 
independent_isectElimination, 
hyp_replacement, 
applyLambdaEquality, 
applyEquality, 
setElimination, 
rename, 
imageElimination, 
natural_numberEquality, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
voidEquality, 
computeAll
Latex:
\mforall{}[T:Type].  \mforall{}eq:EqDecider(T).  \mforall{}as,bs,cs:fset(T).    (as  \msubseteq{}\mneq{}  bs  {}\mRightarrow{}  bs  \msubseteq{}\mneq{}  cs  {}\mRightarrow{}  as  \msubseteq{}\mneq{}  cs)
Date html generated:
2017_04_17-AM-09_22_30
Last ObjectModification:
2017_02_27-PM-05_24_24
Theory : finite!sets
Home
Index