Nuprl Lemma : lattice-extend-dlwc-inc

[T:Type]. ∀[eq:EqDecider(T)]. ∀[Cs:T ⟶ fset(fset(T))]. ∀[L:BoundedDistributiveLattice]. ∀[eqL:EqDecider(Point(L))].
[f:T ⟶ Point(L)].
  ∀[x:T]. (lattice-extend-wc(L;eq;eqL;f;free-dlwc-inc(eq;a.Cs[a];x)) (f x) ∈ Point(L)) 
  supposing ∀x:T. ∀c:fset(T).  (c ∈ Cs[x]  (/\(f"(c)) 0 ∈ Point(L)))


Proof




Definitions occuring in Statement :  lattice-extend-wc: lattice-extend-wc(L;eq;eqL;f;ac) free-dlwc-inc: free-dlwc-inc(eq;a.Cs[a];x) lattice-fset-meet: /\(s) bdd-distributive-lattice: BoundedDistributiveLattice lattice-0: 0 lattice-point: Point(l) fset-image: f"(s) deq-fset: deq-fset(eq) fset-member: a ∈ s fset: fset(T) deq: EqDecider(T) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  bdd-distributive-lattice: BoundedDistributiveLattice false: False assert: b bnot: ¬bb guard: {T} sq_type: SQType(T) or: P ∨ Q exists: x:A. B[x] bfalse: ff ifthenelse: if then else fi  uiff: uiff(P;Q) btrue: tt it: unit: Unit bool: 𝔹 prop: and: P ∧ Q implies:  Q rev_implies:  Q all: x:A. B[x] iff: ⇐⇒ Q so_apply: x[s] subtype_rel: A ⊆B so_lambda: λ2x.t[x] lattice-extend: lattice-extend(L;eq;eqL;f;ac) lattice-extend-wc: lattice-extend-wc(L;eq;eqL;f;ac) free-dlwc-inc: free-dlwc-inc(eq;a.Cs[a];x) uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] true: True squash: T top: Top lattice-fset-join: \/(s) empty-fset: {} not: ¬A decidable: Dec(P) lattice-fset-meet: /\(s)
Lemmas referenced :  bdd-distributive-lattice_wf deq_wf lattice-0_wf fset-image_wf decidable-equal-deq bdd-distributive-lattice-subtype-bdd-lattice lattice-fset-meet_wf lattice-join_wf lattice-meet_wf uall_wf bounded-lattice-axioms_wf bounded-lattice-structure-subtype lattice-axioms_wf lattice-structure_wf bounded-lattice-structure_wf subtype_rel_set lattice-point_wf deq-fset_wf fset-member_wf assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal equal_wf eqff_to_assert eqtt_to_assert fset-singleton_wf assert_wf f-subset_wf iff_wf all_wf bool_wf deq-f-subset_wf fset-filter_wf fset_wf fset-null_wf lattice-fset-meet-singleton iff_weakening_equal lattice-fset-join-singleton true_wf squash_wf fset-image-singleton reduce_nil_lemma fset-image-empty assert-deq-f-subset exists_wf not_wf fset-filter-is-empty equal-wf-T-base assert-fset-null f-subset-singleton lattice-0-equal-lattice-1-implies
Rules used in proof :  universeEquality productEquality axiomEquality isect_memberEquality voidElimination because_Cache independent_functionElimination instantiate dependent_functionElimination promote_hyp dependent_pairFormation independent_isectElimination productElimination equalitySymmetry equalityTransitivity equalityElimination unionElimination lambdaFormation functionExtensionality functionEquality setEquality rename setElimination applyEquality lambdaEquality sqequalRule hypothesis hypothesisEquality cumulativity thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution baseClosed imageMemberEquality natural_numberEquality imageElimination voidEquality existsLevelFunctionality andLevelFunctionality independent_pairFormation existsFunctionality impliesFunctionality applyLambdaEquality hyp_replacement

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[Cs:T  {}\mrightarrow{}  fset(fset(T))].  \mforall{}[L:BoundedDistributiveLattice].
\mforall{}[eqL:EqDecider(Point(L))].  \mforall{}[f:T  {}\mrightarrow{}  Point(L)].
    \mforall{}[x:T].  (lattice-extend-wc(L;eq;eqL;f;free-dlwc-inc(eq;a.Cs[a];x))  =  (f  x)) 
    supposing  \mforall{}x:T.  \mforall{}c:fset(T).    (c  \mmember{}  Cs[x]  {}\mRightarrow{}  (/\mbackslash{}(f"(c))  =  0))



Date html generated: 2020_05_20-AM-08_49_06
Last ObjectModification: 2020_02_03-PM-03_02_04

Theory : lattices


Home Index