Nuprl Lemma : lattice-extend-dlwc-inc
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[Cs:T ⟶ fset(fset(T))]. ∀[L:BoundedDistributiveLattice]. ∀[eqL:EqDecider(Point(L))].
∀[f:T ⟶ Point(L)].
  ∀[x:T]. (lattice-extend-wc(L;eq;eqL;f;free-dlwc-inc(eq;a.Cs[a];x)) = (f x) ∈ Point(L)) 
  supposing ∀x:T. ∀c:fset(T).  (c ∈ Cs[x] 
⇒ (/\(f"(c)) = 0 ∈ Point(L)))
Proof
Definitions occuring in Statement : 
lattice-extend-wc: lattice-extend-wc(L;eq;eqL;f;ac)
, 
free-dlwc-inc: free-dlwc-inc(eq;a.Cs[a];x)
, 
lattice-fset-meet: /\(s)
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
lattice-0: 0
, 
lattice-point: Point(l)
, 
fset-image: f"(s)
, 
deq-fset: deq-fset(eq)
, 
fset-member: a ∈ s
, 
fset: fset(T)
, 
deq: EqDecider(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
false: False
, 
assert: ↑b
, 
bnot: ¬bb
, 
guard: {T}
, 
sq_type: SQType(T)
, 
or: P ∨ Q
, 
exists: ∃x:A. B[x]
, 
bfalse: ff
, 
ifthenelse: if b then t else f fi 
, 
uiff: uiff(P;Q)
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
prop: ℙ
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
rev_implies: P 
⇐ Q
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
lattice-extend: lattice-extend(L;eq;eqL;f;ac)
, 
lattice-extend-wc: lattice-extend-wc(L;eq;eqL;f;ac)
, 
free-dlwc-inc: free-dlwc-inc(eq;a.Cs[a];x)
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
true: True
, 
squash: ↓T
, 
top: Top
, 
lattice-fset-join: \/(s)
, 
empty-fset: {}
, 
not: ¬A
, 
decidable: Dec(P)
, 
lattice-fset-meet: /\(s)
Lemmas referenced : 
bdd-distributive-lattice_wf, 
deq_wf, 
lattice-0_wf, 
fset-image_wf, 
decidable-equal-deq, 
bdd-distributive-lattice-subtype-bdd-lattice, 
lattice-fset-meet_wf, 
lattice-join_wf, 
lattice-meet_wf, 
uall_wf, 
bounded-lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
lattice-axioms_wf, 
lattice-structure_wf, 
bounded-lattice-structure_wf, 
subtype_rel_set, 
lattice-point_wf, 
deq-fset_wf, 
fset-member_wf, 
assert-bnot, 
bool_subtype_base, 
subtype_base_sq, 
bool_cases_sqequal, 
equal_wf, 
eqff_to_assert, 
eqtt_to_assert, 
fset-singleton_wf, 
assert_wf, 
f-subset_wf, 
iff_wf, 
all_wf, 
bool_wf, 
deq-f-subset_wf, 
fset-filter_wf, 
fset_wf, 
fset-null_wf, 
lattice-fset-meet-singleton, 
iff_weakening_equal, 
lattice-fset-join-singleton, 
true_wf, 
squash_wf, 
fset-image-singleton, 
reduce_nil_lemma, 
fset-image-empty, 
assert-deq-f-subset, 
exists_wf, 
not_wf, 
fset-filter-is-empty, 
equal-wf-T-base, 
assert-fset-null, 
f-subset-singleton, 
lattice-0-equal-lattice-1-implies
Rules used in proof : 
universeEquality, 
productEquality, 
axiomEquality, 
isect_memberEquality, 
voidElimination, 
because_Cache, 
independent_functionElimination, 
instantiate, 
dependent_functionElimination, 
promote_hyp, 
dependent_pairFormation, 
independent_isectElimination, 
productElimination, 
equalitySymmetry, 
equalityTransitivity, 
equalityElimination, 
unionElimination, 
lambdaFormation, 
functionExtensionality, 
functionEquality, 
setEquality, 
rename, 
setElimination, 
applyEquality, 
lambdaEquality, 
sqequalRule, 
hypothesis, 
hypothesisEquality, 
cumulativity, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
baseClosed, 
imageMemberEquality, 
natural_numberEquality, 
imageElimination, 
voidEquality, 
existsLevelFunctionality, 
andLevelFunctionality, 
independent_pairFormation, 
existsFunctionality, 
impliesFunctionality, 
applyLambdaEquality, 
hyp_replacement
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[Cs:T  {}\mrightarrow{}  fset(fset(T))].  \mforall{}[L:BoundedDistributiveLattice].
\mforall{}[eqL:EqDecider(Point(L))].  \mforall{}[f:T  {}\mrightarrow{}  Point(L)].
    \mforall{}[x:T].  (lattice-extend-wc(L;eq;eqL;f;free-dlwc-inc(eq;a.Cs[a];x))  =  (f  x)) 
    supposing  \mforall{}x:T.  \mforall{}c:fset(T).    (c  \mmember{}  Cs[x]  {}\mRightarrow{}  (/\mbackslash{}(f"(c))  =  0))
Date html generated:
2020_05_20-AM-08_49_06
Last ObjectModification:
2020_02_03-PM-03_02_04
Theory : lattices
Home
Index