Nuprl Lemma : lattice-fset-meet-singleton

[l:BoundedLattice]. ∀[x:Point(l)].  (/\({x}) x ∈ Point(l))


Proof




Definitions occuring in Statement :  lattice-fset-meet: /\(s) bdd-lattice: BoundedLattice lattice-point: Point(l) fset-singleton: {x} uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] fset-singleton: {x} lattice-fset-meet: /\(s) all: x:A. B[x] member: t ∈ T top: Top bdd-lattice: BoundedLattice and: P ∧ Q squash: T prop: subtype_rel: A ⊆B cand: c∧ B true: True uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  reduce_cons_lemma reduce_nil_lemma equal_wf squash_wf true_wf lattice-point_wf bounded-lattice-structure-subtype lattice-meet-1 lattice-axioms_wf bounded-lattice-axioms_wf iff_weakening_equal subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf bdd-lattice_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation sqequalRule cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis setElimination rename productElimination applyEquality lambdaEquality imageElimination isectElimination hypothesisEquality equalityTransitivity equalitySymmetry universeEquality independent_pairFormation dependent_set_memberEquality productEquality because_Cache natural_numberEquality imageMemberEquality baseClosed independent_isectElimination independent_functionElimination instantiate cumulativity

Latex:
\mforall{}[l:BoundedLattice].  \mforall{}[x:Point(l)].    (/\mbackslash{}(\{x\})  =  x)



Date html generated: 2020_05_20-AM-08_44_06
Last ObjectModification: 2017_07_28-AM-09_14_02

Theory : lattices


Home Index