Nuprl Lemma : bdd-lattice_wf
BoundedLattice ∈ 𝕌'
Proof
Definitions occuring in Statement : 
bdd-lattice: BoundedLattice
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
bdd-lattice: BoundedLattice
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
and: P ∧ Q
, 
prop: ℙ
Lemmas referenced : 
bounded-lattice-structure_wf, 
and_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
setEquality, 
cut, 
lemma_by_obid, 
hypothesis, 
cumulativity, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality
Latex:
BoundedLattice  \mmember{}  \mBbbU{}'
Date html generated:
2020_05_20-AM-08_24_17
Last ObjectModification:
2015_12_28-PM-02_03_25
Theory : lattices
Home
Index