Nuprl Lemma : lattice-fset-join-singleton
∀[l:BoundedLattice]. ∀[x:Point(l)].  (\/({x}) = x ∈ Point(l))
Proof
Definitions occuring in Statement : 
lattice-fset-join: \/(s)
, 
bdd-lattice: BoundedLattice
, 
lattice-point: Point(l)
, 
fset-singleton: {x}
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
fset-singleton: {x}
, 
lattice-fset-join: \/(s)
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
top: Top
, 
bdd-lattice: BoundedLattice
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
guard: {T}
, 
bounded-lattice-axioms: bounded-lattice-axioms(l)
Lemmas referenced : 
reduce_cons_lemma, 
reduce_nil_lemma, 
lattice-point_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
and_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
bdd-lattice_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
sqequalRule, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
setElimination, 
rename, 
productElimination, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
instantiate, 
lambdaEquality, 
cumulativity, 
independent_isectElimination
Latex:
\mforall{}[l:BoundedLattice].  \mforall{}[x:Point(l)].    (\mbackslash{}/(\{x\})  =  x)
Date html generated:
2020_05_20-AM-08_43_46
Last ObjectModification:
2015_12_28-PM-02_01_26
Theory : lattices
Home
Index