Nuprl Lemma : face-lattice0-is-inc

T:Type. ∀eq:EqDecider(T). ∀x:T.  ((x=0) free-dlwc-inc(union-deq(T;T;eq;eq);a.face-lattice-constraints(a);inl x))


Proof




Definitions occuring in Statement :  face-lattice0: (x=0) face-lattice-constraints: face-lattice-constraints(x) free-dlwc-inc: free-dlwc-inc(eq;a.Cs[a];x) union-deq: union-deq(A;B;a;b) deq: EqDecider(T) all: x:A. B[x] inl: inl x universe: Type sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] face-lattice-constraints: face-lattice-constraints(x) free-dlwc-inc: free-dlwc-inc(eq;a.Cs[a];x) face-lattice0: (x=0) fset-singleton: {x} fset-filter: {x ∈ P[x]} fset-null: fset-null(s) member: t ∈ T top: Top uall: [x:A]. B[x] uimplies: supposing a sq_type: SQType(T) implies:  Q guard: {T} ifthenelse: if then else fi  bfalse: ff btrue: tt subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] iff: ⇐⇒ Q rev_implies:  Q and: P ∧ Q prop: uiff: uiff(P;Q) not: ¬A f-subset: xs ⊆ ys isl: isl(x) false: False or: P ∨ Q rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  filter_cons_lemma filter_nil_lemma subtype_base_sq bool_subtype_base null_nil_lemma deq_wf eqff_to_assert deq-f-subset_wf union-deq_wf fset_wf bool_wf all_wf iff_wf f-subset_wf assert_wf fset-pair_wf fset-singleton_wf bnot_wf not_wf iff_transitivity iff_weakening_uiff assert_of_bnot assert-deq-f-subset member-fset-singleton btrue_wf and_wf equal_wf isl_wf bfalse_wf btrue_neq_bfalse member-fset-pair
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalRule lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis instantiate isectElimination because_Cache independent_isectElimination equalityTransitivity equalitySymmetry independent_functionElimination hypothesisEquality universeEquality inlEquality inrEquality applyEquality unionEquality lambdaEquality setElimination rename setEquality functionEquality productElimination independent_pairFormation impliesFunctionality dependent_set_memberEquality inrFormation

Latex:
\mforall{}T:Type.  \mforall{}eq:EqDecider(T).  \mforall{}x:T.
    ((x=0)  \msim{}  free-dlwc-inc(union-deq(T;T;eq;eq);a.face-lattice-constraints(a);inl  x))



Date html generated: 2020_05_20-AM-08_50_48
Last ObjectModification: 2015_12_28-PM-01_57_55

Theory : lattices


Home Index