Nuprl Lemma : face-lattice0-is-inc
∀T:Type. ∀eq:EqDecider(T). ∀x:T.  ((x=0) ~ free-dlwc-inc(union-deq(T;T;eq;eq);a.face-lattice-constraints(a);inl x))
Proof
Definitions occuring in Statement : 
face-lattice0: (x=0)
, 
face-lattice-constraints: face-lattice-constraints(x)
, 
free-dlwc-inc: free-dlwc-inc(eq;a.Cs[a];x)
, 
union-deq: union-deq(A;B;a;b)
, 
deq: EqDecider(T)
, 
all: ∀x:A. B[x]
, 
inl: inl x
, 
universe: Type
, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
face-lattice-constraints: face-lattice-constraints(x)
, 
free-dlwc-inc: free-dlwc-inc(eq;a.Cs[a];x)
, 
face-lattice0: (x=0)
, 
fset-singleton: {x}
, 
fset-filter: {x ∈ s | P[x]}
, 
fset-null: fset-null(s)
, 
member: t ∈ T
, 
top: Top
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
btrue: tt
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
and: P ∧ Q
, 
prop: ℙ
, 
uiff: uiff(P;Q)
, 
not: ¬A
, 
f-subset: xs ⊆ ys
, 
isl: isl(x)
, 
false: False
, 
or: P ∨ Q
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
filter_cons_lemma, 
filter_nil_lemma, 
subtype_base_sq, 
bool_subtype_base, 
null_nil_lemma, 
deq_wf, 
eqff_to_assert, 
deq-f-subset_wf, 
union-deq_wf, 
fset_wf, 
bool_wf, 
all_wf, 
iff_wf, 
f-subset_wf, 
assert_wf, 
fset-pair_wf, 
fset-singleton_wf, 
bnot_wf, 
not_wf, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot, 
assert-deq-f-subset, 
member-fset-singleton, 
btrue_wf, 
and_wf, 
equal_wf, 
isl_wf, 
bfalse_wf, 
btrue_neq_bfalse, 
member-fset-pair
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
instantiate, 
isectElimination, 
because_Cache, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
hypothesisEquality, 
universeEquality, 
inlEquality, 
inrEquality, 
applyEquality, 
unionEquality, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
functionEquality, 
productElimination, 
independent_pairFormation, 
impliesFunctionality, 
dependent_set_memberEquality, 
inrFormation
Latex:
\mforall{}T:Type.  \mforall{}eq:EqDecider(T).  \mforall{}x:T.
    ((x=0)  \msim{}  free-dlwc-inc(union-deq(T;T;eq;eq);a.face-lattice-constraints(a);inl  x))
Date html generated:
2020_05_20-AM-08_50_48
Last ObjectModification:
2015_12_28-PM-01_57_55
Theory : lattices
Home
Index