Nuprl Lemma : face-lattice0_wf

[T:Type]. ∀[eq:EqDecider(T)]. ∀[x:T].  ((x=0) ∈ Point(face-lattice(T;eq)))


Proof




Definitions occuring in Statement :  face-lattice0: (x=0) face-lattice: face-lattice(T;eq) lattice-point: Point(l) deq: EqDecider(T) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] face-lattice: face-lattice(T;eq) all: x:A. B[x]
Lemmas referenced :  free-dlwc-inc_wf union-deq_wf face-lattice-constraints_wf face-lattice0-is-inc deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin unionEquality hypothesisEquality hypothesis sqequalRule lambdaEquality inlEquality dependent_functionElimination equalityTransitivity equalitySymmetry axiomEquality isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[x:T].    ((x=0)  \mmember{}  Point(face-lattice(T;eq)))



Date html generated: 2020_05_20-AM-08_50_52
Last ObjectModification: 2015_12_28-PM-01_57_36

Theory : lattices


Home Index