Step
*
of Lemma
fl-morph-restriction
No Annotations
∀[I,J,K:fset(ℕ)]. ∀[f:I ⟶ J]. ∀[g:J ⟶ K]. ∀[phi:𝔽(K)].  ((g(phi))<f> = g ⋅ f(phi) ∈ 𝔽(I))
BY
{ (Auto
   THEN (InstLemma `cube-set-restriction-comp` [⌜𝔽⌝;⌜K⌝;⌜J⌝;⌜I⌝;⌜g⌝;⌜f⌝;⌜phi⌝]⋅ THENA Auto)
   THEN NthHypEqGen (-1)
   THEN EqCD
   THEN Auto) }
Latex:
Latex:
No  Annotations
\mforall{}[I,J,K:fset(\mBbbN{})].  \mforall{}[f:I  {}\mrightarrow{}  J].  \mforall{}[g:J  {}\mrightarrow{}  K].  \mforall{}[phi:\mBbbF{}(K)].    ((g(phi))<f>  =  g  \mcdot{}  f(phi))
By
Latex:
(Auto
  THEN  (InstLemma  `cube-set-restriction-comp`  [\mkleeneopen{}\mBbbF{}\mkleeneclose{};\mkleeneopen{}K\mkleeneclose{};\mkleeneopen{}J\mkleeneclose{};\mkleeneopen{}I\mkleeneclose{};\mkleeneopen{}g\mkleeneclose{};\mkleeneopen{}f\mkleeneclose{};\mkleeneopen{}phi\mkleeneclose{}]\mcdot{}  THENA  Auto)
  THEN  NthHypEqGen  (-1)
  THEN  EqCD
  THEN  Auto)
Home
Index