Nuprl Lemma : cubical-path-condition_wf
∀[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[I:fset(ℕ)]. ∀[i:{i:ℕ| ¬i ∈ I} ]. ∀[rho:Gamma(I+i)]. ∀[phi:𝔽(I)].
∀[u:{I+i,s(phi) ⊢ _:(A)<rho> o iota}]. ∀[a0:A((i0)(rho))].
(cubical-path-condition(Gamma;A;I;i;rho;phi;u;a0) ∈ ℙ')
Proof
Definitions occuring in Statement :
cubical-path-condition: cubical-path-condition(Gamma;A;I;i;rho;phi;u;a0)
,
cubical-term: {X ⊢ _:A}
,
csm-ap-type: (AF)s
,
cubical-type-at: A(a)
,
cubical-type: {X ⊢ _}
,
subset-iota: iota
,
cubical-subset: I,psi
,
face-presheaf: 𝔽
,
csm-comp: G o F
,
context-map: <rho>
,
formal-cube: formal-cube(I)
,
cube-set-restriction: f(s)
,
I_cube: A(I)
,
cubical_set: CubicalSet
,
nc-0: (i0)
,
nc-s: s
,
add-name: I+i
,
fset-member: a ∈ s
,
fset: fset(T)
,
int-deq: IntDeq
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
not: ¬A
,
member: t ∈ T
,
set: {x:A| B[x]}
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
cubical-path-condition: cubical-path-condition(Gamma;A;I;i;rho;phi;u;a0)
,
prop: ℙ
,
all: ∀x:A. B[x]
,
nat: ℕ
,
ge: i ≥ j
,
decidable: Dec(P)
,
or: P ∨ Q
,
uimplies: b supposing a
,
not: ¬A
,
implies: P
⇒ Q
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
false: False
,
and: P ∧ Q
,
subtype_rel: A ⊆r B
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
squash: ↓T
,
context-map: <rho>
,
subset-iota: iota
,
csm-comp: G o F
,
csm-ap: (s)x
,
compose: f o g
,
functor-arrow: arrow(F)
,
cube-set-restriction: f(s)
,
true: True
Lemmas referenced :
cubical-subset_wf,
fset_wf,
nat_wf,
I_cube_wf,
cubical-subset-I_cube-member,
istype-cubical-type-at,
cube-set-restriction_wf,
add-name_wf,
nat_properties,
decidable__le,
full-omega-unsat,
intformand_wf,
intformnot_wf,
intformle_wf,
itermConstant_wf,
itermVar_wf,
istype-int,
int_formula_prop_and_lemma,
int_formula_prop_not_lemma,
int_formula_prop_le_lemma,
int_term_value_constant_lemma,
int_term_value_var_lemma,
int_formula_prop_wf,
istype-le,
nc-0_wf,
istype-cubical-term,
face-presheaf_wf2,
nc-s_wf,
f-subset-add-name,
csm-ap-type_wf,
csm-comp_wf,
formal-cube_wf1,
subset-iota_wf,
context-map_wf,
istype-nat,
fset-member_wf,
int-deq_wf,
strong-subtype-deq-subtype,
strong-subtype-set3,
le_wf,
strong-subtype-self,
istype-void,
cubical-type_wf,
cubical_set_wf,
comp-nc-0-subset-I_cube,
cubical-term-at_wf,
csm-ap-type-at,
cubical-type-at_wf,
cube-set-restriction-comp,
equal_wf,
cubical-type-ap-morph_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation_alt,
cut,
thin,
instantiate,
introduction,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
because_Cache,
hypothesisEquality,
sqequalRule,
functionEquality,
cumulativity,
hypothesis,
dependent_set_memberEquality_alt,
setElimination,
rename,
dependent_functionElimination,
natural_numberEquality,
unionElimination,
independent_isectElimination,
approximateComputation,
independent_functionElimination,
dependent_pairFormation_alt,
lambdaEquality_alt,
int_eqEquality,
Error :memTop,
independent_pairFormation,
universeIsType,
voidElimination,
setIsType,
functionIsType,
applyEquality,
intEquality,
productElimination,
equalityTransitivity,
equalitySymmetry,
imageElimination,
imageMemberEquality,
baseClosed,
hyp_replacement
Latex:
\mforall{}[Gamma:j\mvdash{}]. \mforall{}[A:\{Gamma \mvdash{} \_\}]. \mforall{}[I:fset(\mBbbN{})]. \mforall{}[i:\{i:\mBbbN{}| \mneg{}i \mmember{} I\} ]. \mforall{}[rho:Gamma(I+i)]. \mforall{}[phi:\mBbbF{}(I)].
\mforall{}[u:\{I+i,s(phi) \mvdash{} \_:(A)<rho> o iota\}]. \mforall{}[a0:A((i0)(rho))].
(cubical-path-condition(Gamma;A;I;i;rho;phi;u;a0) \mmember{} \mBbbP{}')
Date html generated:
2020_05_20-PM-03_44_56
Last ObjectModification:
2020_04_21-AM-01_09_00
Theory : cubical!type!theory
Home
Index