Nuprl Lemma : comp-nc-0-subset-I_cube

[I:fset(ℕ)]. ∀[i:{i:ℕ| ¬i ∈ I} ]. ∀[phi:𝔽(I)].  ∀J:fset(ℕ). ∀[f:I,phi(J)]. ((i0) ⋅ f ∈ I+i,s(phi)(J))


Proof




Definitions occuring in Statement :  cubical-subset: I,psi face-presheaf: 𝔽 cube-set-restriction: f(s) I_cube: A(I) nc-0: (i0) nc-s: s add-name: I+i nh-comp: g ⋅ f fset-member: a ∈ s fset: fset(T) int-deq: IntDeq nat: uall: [x:A]. B[x] all: x:A. B[x] not: ¬A member: t ∈ T set: {x:A| B[x]} 
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] and: P ∧ Q uimplies: supposing a subtype_rel: A ⊆B I_cube: A(I) functor-ob: ob(F) pi1: fst(t) face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt prop: so_lambda: λ2x.t[x] so_apply: x[s] uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) squash: T bdd-distributive-lattice: BoundedDistributiveLattice true: True nat: guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  cubical-subset-I_cube-member member-cubical-subset-I_cube add-name_wf cube-set-restriction_wf face-presheaf_wf nc-s_wf f-subset-add-name nh-comp_wf nc-0_wf name-morph-satisfies-comp subtype_rel_self fset_wf names_wf assert_wf fset-antichain_wf union-deq_wf names-deq_wf fset-all_wf fset-contains-none_wf face-lattice-constraints_wf name-morph-satisfies_wf names-hom_wf lattice-point_wf face_lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf equal_wf lattice-meet_wf lattice-join_wf I_cube_wf cubical-subset_wf nat_wf set_wf not_wf fset-member_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self nh-id-right iff_weakening_equal squash_wf true_wf nh-comp-assoc s-comp-nc-0
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality productElimination setElimination rename hypothesis because_Cache independent_isectElimination dependent_functionElimination applyEquality sqequalRule setEquality unionEquality productEquality lambdaEquality hyp_replacement equalitySymmetry imageElimination equalityTransitivity instantiate cumulativity universeEquality natural_numberEquality imageMemberEquality baseClosed axiomEquality isect_memberEquality intEquality independent_functionElimination

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[i:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  I\}  ].  \mforall{}[phi:\mBbbF{}(I)].
    \mforall{}J:fset(\mBbbN{}).  \mforall{}[f:I,phi(J)].  ((i0)  \mcdot{}  f  \mmember{}  I+i,s(phi)(J))



Date html generated: 2017_10_05-AM-02_18_56
Last ObjectModification: 2017_07_28-AM-10_18_40

Theory : cubical!type!theory


Home Index