Nuprl Lemma : comp-nc-0-subset-I_cube
∀[I:fset(ℕ)]. ∀[i:{i:ℕ| ¬i ∈ I} ]. ∀[phi:𝔽(I)].  ∀J:fset(ℕ). ∀[f:I,phi(J)]. ((i0) ⋅ f ∈ I+i,s(phi)(J))
Proof
Definitions occuring in Statement : 
cubical-subset: I,psi
, 
face-presheaf: 𝔽
, 
cube-set-restriction: f(s)
, 
I_cube: A(I)
, 
nc-0: (i0)
, 
nc-s: s
, 
add-name: I+i
, 
nh-comp: g ⋅ f
, 
fset-member: a ∈ s
, 
fset: fset(T)
, 
int-deq: IntDeq
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
I_cube: A(I)
, 
functor-ob: ob(F)
, 
pi1: fst(t)
, 
face-presheaf: 𝔽
, 
lattice-point: Point(l)
, 
record-select: r.x
, 
face_lattice: face_lattice(I)
, 
face-lattice: face-lattice(T;eq)
, 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x])
, 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P)
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
record-update: r[x := v]
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
bfalse: ff
, 
btrue: tt
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
squash: ↓T
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
true: True
, 
nat: ℕ
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
cubical-subset-I_cube-member, 
member-cubical-subset-I_cube, 
add-name_wf, 
cube-set-restriction_wf, 
face-presheaf_wf, 
nc-s_wf, 
f-subset-add-name, 
nh-comp_wf, 
nc-0_wf, 
name-morph-satisfies-comp, 
subtype_rel_self, 
fset_wf, 
names_wf, 
assert_wf, 
fset-antichain_wf, 
union-deq_wf, 
names-deq_wf, 
fset-all_wf, 
fset-contains-none_wf, 
face-lattice-constraints_wf, 
name-morph-satisfies_wf, 
names-hom_wf, 
lattice-point_wf, 
face_lattice_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
uall_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
I_cube_wf, 
cubical-subset_wf, 
nat_wf, 
set_wf, 
not_wf, 
fset-member_wf, 
int-deq_wf, 
strong-subtype-deq-subtype, 
strong-subtype-set3, 
le_wf, 
strong-subtype-self, 
nh-id-right, 
iff_weakening_equal, 
squash_wf, 
true_wf, 
nh-comp-assoc, 
s-comp-nc-0
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
productElimination, 
setElimination, 
rename, 
hypothesis, 
because_Cache, 
independent_isectElimination, 
dependent_functionElimination, 
applyEquality, 
sqequalRule, 
setEquality, 
unionEquality, 
productEquality, 
lambdaEquality, 
hyp_replacement, 
equalitySymmetry, 
imageElimination, 
equalityTransitivity, 
instantiate, 
cumulativity, 
universeEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
axiomEquality, 
isect_memberEquality, 
intEquality, 
independent_functionElimination
Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[i:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  I\}  ].  \mforall{}[phi:\mBbbF{}(I)].
    \mforall{}J:fset(\mBbbN{}).  \mforall{}[f:I,phi(J)].  ((i0)  \mcdot{}  f  \mmember{}  I+i,s(phi)(J))
Date html generated:
2017_10_05-AM-02_18_56
Last ObjectModification:
2017_07_28-AM-10_18_40
Theory : cubical!type!theory
Home
Index