Nuprl Lemma : name-morph-satisfies_wf

[I,J:fset(ℕ)]. ∀[psi:Point(face_lattice(I))]. ∀[f:J ⟶ I].  ((psi f) 1 ∈ ℙ)


Proof




Definitions occuring in Statement :  name-morph-satisfies: (psi f) 1 face_lattice: face_lattice(I) names-hom: I ⟶ J lattice-point: Point(l) fset: fset(T) nat: uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T name-morph-satisfies: (psi f) 1 subtype_rel: A ⊆B bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] uimplies: supposing a
Lemmas referenced :  equal_wf lattice-point_wf face_lattice_wf fl-morph_wf bounded-lattice-hom_wf bdd-distributive-lattice_wf lattice-1_wf names-hom_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf lattice-meet_wf lattice-join_wf fset_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality because_Cache lambdaEquality setElimination rename axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality instantiate productEquality cumulativity universeEquality independent_isectElimination

Latex:
\mforall{}[I,J:fset(\mBbbN{})].  \mforall{}[psi:Point(face\_lattice(I))].  \mforall{}[f:J  {}\mrightarrow{}  I].    ((psi  f)  =  1  \mmember{}  \mBbbP{})



Date html generated: 2016_05_18-PM-00_19_55
Last ObjectModification: 2015_12_28-PM-02_59_43

Theory : cubical!type!theory


Home Index