Nuprl Lemma : name-morph-satisfies_wf
∀[I,J:fset(ℕ)]. ∀[psi:Point(face_lattice(I))]. ∀[f:J ⟶ I].  ((psi f) = 1 ∈ ℙ)
Proof
Definitions occuring in Statement : 
name-morph-satisfies: (psi f) = 1
, 
face_lattice: face_lattice(I)
, 
names-hom: I ⟶ J
, 
lattice-point: Point(l)
, 
fset: fset(T)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
name-morph-satisfies: (psi f) = 1
, 
subtype_rel: A ⊆r B
, 
bounded-lattice-hom: Hom(l1;l2)
, 
lattice-hom: Hom(l1;l2)
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
uimplies: b supposing a
Lemmas referenced : 
equal_wf, 
lattice-point_wf, 
face_lattice_wf, 
fl-morph_wf, 
bounded-lattice-hom_wf, 
bdd-distributive-lattice_wf, 
lattice-1_wf, 
names-hom_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
uall_wf, 
lattice-meet_wf, 
lattice-join_wf, 
fset_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
because_Cache, 
lambdaEquality, 
setElimination, 
rename, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
instantiate, 
productEquality, 
cumulativity, 
universeEquality, 
independent_isectElimination
Latex:
\mforall{}[I,J:fset(\mBbbN{})].  \mforall{}[psi:Point(face\_lattice(I))].  \mforall{}[f:J  {}\mrightarrow{}  I].    ((psi  f)  =  1  \mmember{}  \mBbbP{})
Date html generated:
2016_05_18-PM-00_19_55
Last ObjectModification:
2015_12_28-PM-02_59_43
Theory : cubical!type!theory
Home
Index