Nuprl Lemma : name-morph-satisfies-comp

[I,J,K:fset(ℕ)]. ∀[psi:Point(face_lattice(I))]. ∀[f:J ⟶ I]. ∀[g:K ⟶ J].  uiff((f(psi) g) 1;(psi f ⋅ g) 1)


Proof




Definitions occuring in Statement :  name-morph-satisfies: (psi f) 1 face-presheaf: 𝔽 face_lattice: face_lattice(I) cube-set-restriction: f(s) nh-comp: g ⋅ f names-hom: I ⟶ J lattice-point: Point(l) fset: fset(T) nat: uiff: uiff(P;Q) uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a name-morph-satisfies: (psi f) 1 prop: squash: T subtype_rel: A ⊆B bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) bdd-distributive-lattice: BoundedDistributiveLattice I_cube: A(I) functor-ob: ob(F) pi1: fst(t) face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt so_lambda: λ2x.t[x] so_apply: x[s] true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q fl-morph: <f> fl-lift: fl-lift(T;eq;L;eqL;f0;f1) face-lattice-property free-dist-lattice-with-constraints-property lattice-extend-wc: lattice-extend-wc(L;eq;eqL;f;ac) lattice-extend: lattice-extend(L;eq;eqL;f;ac) lattice-fset-join: \/(s) reduce: reduce(f;k;as) list_ind: list_ind fset-image: f"(s) f-union: f-union(domeq;rngeq;s;x.g[x]) list_accum: list_accum cube-set-restriction: f(s) pi2: snd(t)
Lemmas referenced :  equal_wf squash_wf true_wf lattice-point_wf face_lattice_wf fl-morph_wf nh-comp_wf bounded-lattice-hom_wf bdd-distributive-lattice_wf fl-morph-restriction subtype_rel_self fset_wf names_wf assert_wf fset-antichain_wf union-deq_wf names-deq_wf fset-all_wf fset-contains-none_wf face-lattice-constraints_wf iff_weakening_equal cube-set-restriction_wf face-presheaf_wf name-morph-satisfies_wf names-hom_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf lattice-meet_wf lattice-join_wf nat_wf face-lattice-property free-dist-lattice-with-constraints-property
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation sqequalHypSubstitution hypothesis hyp_replacement thin equalitySymmetry sqequalRule applyEquality lambdaEquality imageElimination extract_by_obid isectElimination hypothesisEquality equalityTransitivity universeEquality because_Cache setElimination rename setEquality unionEquality productEquality natural_numberEquality imageMemberEquality baseClosed independent_isectElimination productElimination independent_functionElimination axiomEquality independent_pairEquality isect_memberEquality instantiate cumulativity

Latex:
\mforall{}[I,J,K:fset(\mBbbN{})].  \mforall{}[psi:Point(face\_lattice(I))].  \mforall{}[f:J  {}\mrightarrow{}  I].  \mforall{}[g:K  {}\mrightarrow{}  J].
    uiff((f(psi)  g)  =  1;(psi  f  \mcdot{}  g)  =  1)



Date html generated: 2017_10_05-AM-01_17_26
Last ObjectModification: 2017_07_28-AM-09_33_06

Theory : cubical!type!theory


Home Index