Step * of Lemma cubical-path-condition_wf

No Annotations
[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[I:fset(ℕ)]. ∀[i:{i:ℕ| ¬i ∈ I} ]. ∀[rho:Gamma(I+i)]. ∀[phi:𝔽(I)].
[u:{I+i,s(phi) ⊢ _:(A)<rho> iota}]. ∀[a0:A((i0)(rho))].
  (cubical-path-condition(Gamma;A;I;i;rho;phi;u;a0) ∈ ℙ')
BY
(Intros
   THEN Unhide
   THEN Unfold `cubical-path-condition` 0
   THEN (InstLemma_o (ioid Obid: cubical-subset_wf) [⌜parm{i}⌝;⌜I⌝;⌜phi⌝]⋅ THENA Auto)
   THEN RepeatFor ((MemCD THENL [Auto; Id]))
   THEN (InstLemma `cubical-subset-I_cube-member` [⌜I⌝;⌜phi⌝;⌜J⌝;⌜f⌝]⋅ THENA Auto)) }

1
1. Gamma CubicalSet{j}
2. {Gamma ⊢ _}
3. fset(ℕ)
4. {i:ℕ| ¬i ∈ I} 
5. rho Gamma(I+i)
6. phi : 𝔽(I)
7. {I+i,s(phi) ⊢ _:(A)<rho> iota}
8. a0 A((i0)(rho))
9. I,phi ⊢
10. fset(ℕ)
11. I,phi(J)
12. (f ∈ J ⟶ I) ∧ (phi f) 1
⊢ (a0 (i0)(rho) f) u((i0) ⋅ f) ∈ A(f((i0)(rho))) ∈ ℙ'


Latex:


Latex:
No  Annotations
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[I:fset(\mBbbN{})].  \mforall{}[i:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  I\}  ].  \mforall{}[rho:Gamma(I+i)].  \mforall{}[phi:\mBbbF{}(I)].
\mforall{}[u:\{I+i,s(phi)  \mvdash{}  \_:(A)<rho>  o  iota\}].  \mforall{}[a0:A((i0)(rho))].
    (cubical-path-condition(Gamma;A;I;i;rho;phi;u;a0)  \mmember{}  \mBbbP{}')


By


Latex:
(Intros
  THEN  Unhide
  THEN  Unfold  `cubical-path-condition`  0
  THEN  (InstLemma\_o  (ioid  Obid:  cubical-subset\_wf)  [\mkleeneopen{}parm\{i\}\mkleeneclose{};\mkleeneopen{}I\mkleeneclose{};\mkleeneopen{}phi\mkleeneclose{}]\mcdot{}  THENA  Auto)
  THEN  RepeatFor  2  ((MemCD  THENL  [Auto;  Id]))
  THEN  (InstLemma  `cubical-subset-I\_cube-member`  [\mkleeneopen{}I\mkleeneclose{};\mkleeneopen{}phi\mkleeneclose{};\mkleeneopen{}J\mkleeneclose{};\mkleeneopen{}f\mkleeneclose{}]\mcdot{}  THENA  Auto))




Home Index