Nuprl Lemma : csm-comp-context-map

[Gamma,Delta:j⊢]. ∀[sigma:Delta j⟶ Gamma]. ∀[I:fset(ℕ)]. ∀[rho:Delta(I)].
  (sigma o <rho> = <(sigma)rho> ∈ formal-cube(I) j⟶ Gamma)


Proof




Definitions occuring in Statement :  csm-comp: F csm-ap: (s)x context-map: <rho> cube_set_map: A ⟶ B formal-cube: formal-cube(I) I_cube: A(I) cubical_set: CubicalSet fset: fset(T) nat: uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cube_set_map: A ⟶ B cubical_set: CubicalSet subtype_rel: A ⊆B fset: fset(T) quotient: x,y:A//B[x; y] cat-ob: cat-ob(C) pi1: fst(t) cube-cat: CubeCat I_cube: A(I) functor-ob: ob(F) I_set: A(I) psc_map: A ⟶ B nat-trans: nat-trans(C;D;F;G) op-cat: op-cat(C) spreadn: spread4 cat-arrow: cat-arrow(C) pi2: snd(t) type-cat: TypeCat formal-cube: formal-cube(I) names-hom: I ⟶ J Yoneda: Yoneda(I) all: x:A. B[x] cat-comp: cat-comp(C) compose: g functor-arrow: arrow(F) nh-comp: g ⋅ f dma-lift-compose: dma-lift-compose(I;J;eqi;eqj;f;g) csm-comp: F pscm-comp: F context-map: <rho> ps-context-map: <rho> csm-ap: (s)x pscm-ap: (s)x
Lemmas referenced :  pscm-comp-context-map cube-cat_wf subtype_rel_self cat-ob_wf I_set_wf I_cube_wf fset_wf nat_wf cube_set_map_wf cubical_set_wf
Rules used in proof :  cut instantiate introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis sqequalRule isect_memberFormation_alt hypothesisEquality applyEquality universeIsType because_Cache

Latex:
\mforall{}[Gamma,Delta:j\mvdash{}].  \mforall{}[sigma:Delta  j{}\mrightarrow{}  Gamma].  \mforall{}[I:fset(\mBbbN{})].  \mforall{}[rho:Delta(I)].
    (sigma  o  <rho>  =  <(sigma)rho>)



Date html generated: 2020_05_20-PM-01_54_09
Last ObjectModification: 2020_04_20-AM-10_45_15

Theory : cubical!type!theory


Home Index