Nuprl Lemma : pscm-comp-context-map

[C:SmallCategory]. ∀[Gamma,Delta:ps_context{j:l}(C)]. ∀[sigma:psc_map{j:l}(C; Delta; Gamma)]. ∀[I:cat-ob(C)].
[rho:Delta(I)].
  (sigma o <rho> = <(sigma)rho> ∈ psc_map{[i j]:l}(C; Yoneda(I); Gamma))


Proof




Definitions occuring in Statement :  pscm-comp: F pscm-ap: (s)x ps-context-map: <rho> psc_map: A ⟶ B Yoneda: Yoneda(I) I_set: A(I) ps_context: __⊢ uall: [x:A]. B[x] equal: t ∈ T cat-ob: cat-ob(C) small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B all: x:A. B[x] psc_map: A ⟶ B nat-trans: nat-trans(C;D;F;G) cat-ob: cat-ob(C) pi1: fst(t) op-cat: op-cat(C) spreadn: spread4 cat-arrow: cat-arrow(C) pi2: snd(t) type-cat: TypeCat cat-comp: cat-comp(C) compose: g uimplies: supposing a I_set: A(I) ps-context-map: <rho> pscm-comp: F functor-arrow: arrow(F) psc-restriction: f(s) Yoneda: Yoneda(I) squash: T prop: functor-ob: ob(F) true: True guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q pscm-ap: (s)x
Lemmas referenced :  pscm-equal Yoneda_wf small-category-cumulativity-2 ps_context_cumulativity2 pscm-comp_wf ps-context-map_wf subtype_rel_self psc_map_wf I_set_wf cat-ob_wf ps_context_wf small-category_wf pscm-ap_wf subtype_rel-equal op-cat_wf cat_ob_op_lemma ob_pair_lemma equal_wf squash_wf true_wf istype-universe psc-restriction_wf pscm-ap-restriction iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut thin instantiate extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality applyEquality hypothesis sqequalRule because_Cache dependent_functionElimination functionExtensionality independent_isectElimination universeIsType isect_memberEquality_alt axiomEquality isectIsTypeImplies inhabitedIsType lambdaEquality_alt setElimination rename equalityTransitivity equalitySymmetry functionEquality cumulativity Error :memTop,  imageElimination universeEquality natural_numberEquality imageMemberEquality baseClosed productElimination independent_functionElimination

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[Gamma,Delta:ps\_context\{j:l\}(C)].  \mforall{}[sigma:psc\_map\{j:l\}(C;  Delta;  Gamma)].
\mforall{}[I:cat-ob(C)].  \mforall{}[rho:Delta(I)].
    (sigma  o  <rho>  =  <(sigma)rho>)



Date html generated: 2020_05_20-PM-01_27_08
Last ObjectModification: 2020_04_20-AM-10_34_58

Theory : presheaf!models!of!type!theory


Home Index