Nuprl Lemma : Yoneda_wf

[C:SmallCategory]. ∀[I:cat-ob(C)].  (Yoneda(I) ∈ __⊢)


Proof




Definitions occuring in Statement :  Yoneda: Yoneda(I) ps_context: __⊢ uall: [x:A]. B[x] member: t ∈ T cat-ob: cat-ob(C) small-category: SmallCategory
Definitions unfolded in proof :  ps_context: __⊢ uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B
Lemmas referenced :  Yoneda-is-rep-pre-sheaf rep-pre-sheaf_wf small-category-subtype cat-ob_wf small-category_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin Error :memTop,  hypothesis isect_memberFormation_alt instantiate hypothesisEquality applyEquality axiomEquality equalityTransitivity equalitySymmetry universeIsType isect_memberEquality_alt isectIsTypeImplies inhabitedIsType

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[I:cat-ob(C)].    (Yoneda(I)  \mmember{}  \_\_\mvdash{})



Date html generated: 2020_05_20-PM-01_23_39
Last ObjectModification: 2020_04_03-AM-11_51_25

Theory : presheaf!models!of!type!theory


Home Index