Nuprl Lemma : Yoneda_wf
∀[C:SmallCategory]. ∀[I:cat-ob(C)].  (Yoneda(I) ∈ __⊢)
Proof
Definitions occuring in Statement : 
Yoneda: Yoneda(I)
, 
ps_context: __⊢
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
cat-ob: cat-ob(C)
, 
small-category: SmallCategory
Definitions unfolded in proof : 
ps_context: __⊢
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
Yoneda-is-rep-pre-sheaf, 
rep-pre-sheaf_wf, 
small-category-subtype, 
cat-ob_wf, 
small-category_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
Error :memTop, 
hypothesis, 
isect_memberFormation_alt, 
instantiate, 
hypothesisEquality, 
applyEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType
Latex:
\mforall{}[C:SmallCategory].  \mforall{}[I:cat-ob(C)].    (Yoneda(I)  \mmember{}  \_\_\mvdash{})
Date html generated:
2020_05_20-PM-01_23_39
Last ObjectModification:
2020_04_03-AM-11_51_25
Theory : presheaf!models!of!type!theory
Home
Index