Nuprl Lemma : Yoneda-is-rep-pre-sheaf
∀[C,I:Top].  (Yoneda(I) ~ rep-pre-sheaf(C;I))
Proof
Definitions occuring in Statement : 
Yoneda: Yoneda(I)
, 
rep-pre-sheaf: rep-pre-sheaf(C;X)
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
rep-pre-sheaf: rep-pre-sheaf(C;X)
, 
Yoneda: Yoneda(I)
, 
cat-comp: cat-comp(C)
, 
cat-arrow: cat-arrow(C)
Lemmas referenced : 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
sqequalAxiom, 
extract_by_obid, 
sqequalRule, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache
Latex:
\mforall{}[C,I:Top].    (Yoneda(I)  \msim{}  rep-pre-sheaf(C;I))
Date html generated:
2018_05_22-PM-09_59_26
Last ObjectModification:
2018_05_20-PM-09_42_12
Theory : presheaf!models!of!type!theory
Home
Index