Nuprl Lemma : Yoneda-is-rep-pre-sheaf

[C,I:Top].  (Yoneda(I) rep-pre-sheaf(C;I))


Proof




Definitions occuring in Statement :  Yoneda: Yoneda(I) rep-pre-sheaf: rep-pre-sheaf(C;X) uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rep-pre-sheaf: rep-pre-sheaf(C;X) Yoneda: Yoneda(I) cat-comp: cat-comp(C) cat-arrow: cat-arrow(C)
Lemmas referenced :  top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis sqequalAxiom extract_by_obid sqequalRule sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality because_Cache

Latex:
\mforall{}[C,I:Top].    (Yoneda(I)  \msim{}  rep-pre-sheaf(C;I))



Date html generated: 2018_05_22-PM-09_59_26
Last ObjectModification: 2018_05_20-PM-09_42_12

Theory : presheaf!models!of!type!theory


Home Index