Nuprl Lemma : csm-ap-restriction

X,Y:j⊢. ∀s:X j⟶ Y. ∀I,J:fset(ℕ). ∀f:J ⟶ I. ∀a:X(I).  (f((s)a) (s)f(a) ∈ Y(J))


Proof




Definitions occuring in Statement :  csm-ap: (s)x cube_set_map: A ⟶ B cube-set-restriction: f(s) I_cube: A(I) cubical_set: CubicalSet names-hom: I ⟶ J fset: fset(T) nat: all: x:A. B[x] equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T cubical_set: CubicalSet cube_set_map: A ⟶ B cube-cat: CubeCat I_cube: A(I) I_set: A(I) cube-set-restriction: f(s) psc-restriction: f(s) csm-ap: (s)x pscm-ap: (s)x
Lemmas referenced :  pscm-ap-restriction cube-cat_wf cat_ob_pair_lemma cat_arrow_triple_lemma
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity dependent_functionElimination thin hypothesis sqequalRule Error :memTop

Latex:
\mforall{}X,Y:j\mvdash{}.  \mforall{}s:X  j{}\mrightarrow{}  Y.  \mforall{}I,J:fset(\mBbbN{}).  \mforall{}f:J  {}\mrightarrow{}  I.  \mforall{}a:X(I).    (f((s)a)  =  (s)f(a))



Date html generated: 2020_05_20-PM-01_42_52
Last ObjectModification: 2020_04_03-PM-03_34_40

Theory : cubical!type!theory


Home Index