Nuprl Lemma : comp-fun-to-comp-op_wf

Gamma:j⊢. ∀A:{Gamma ⊢ _}.  ∀[comp:Gamma ⊢ Compositon(A)]. (cfun-to-cop(Gamma;A;comp) ∈ Gamma ⊢ CompOp(A))


Proof




Definitions occuring in Statement :  comp-fun-to-comp-op: cfun-to-cop(Gamma;A;comp) composition-structure: Gamma ⊢ Compositon(A) composition-op: Gamma ⊢ CompOp(A) cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T composition-structure: Gamma ⊢ Compositon(A) composition-op: Gamma ⊢ CompOp(A) composition-uniformity: composition-uniformity(Gamma;A;comp) comp-fun-to-comp-op: cfun-to-cop(Gamma;A;comp) comp-fun-to-comp-op1: comp-fun-to-comp-op1(Gamma;A;comp) uniform-comp-function: uniform-comp-function{j:l, i:l}(Gamma; A; comp) subtype_rel: A ⊆B names-hom: I ⟶ J I_cube: A(I) functor-ob: ob(F) pi1: fst(t) formal-cube: formal-cube(I) nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False and: P ∧ Q prop: unit: Unit trivial-cube-set: () face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt cubical-type-at: A(a) face-type: 𝔽 constant-cubical-type: (X) so_lambda: λ2x.t[x] so_apply: x[s] squash: T true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q canonical-section: canonical-section(Gamma;A;I;rho;a) cubical-term-at: u(a) ext-eq: A ≡ B lattice-hom: Hom(l1;l2) bounded-lattice-hom: Hom(l1;l2) bdd-distributive-lattice: BoundedDistributiveLattice compose: g csm-ap: (s)x csm-comp: F subset-iota: iota csm-ap-type: (AF)s cubical-type: {X ⊢ _} cube-set-restriction: f(s) functor-arrow: arrow(F) subset-trans: subset-trans(I;J;f;x) context-map: <rho> interval-presheaf: 𝕀 cube-context-adjoin: X.A cube+: cube+(I;i) cc-fst: p pi2: snd(t) assert: b bnot: ¬bb sq_type: SQType(T) uiff: uiff(P;Q) it: bool: 𝔹 names: names(I) DeMorgan-algebra: DeMorganAlgebra nc-s: s cat-comp: cat-comp(C) type-cat: TypeCat cat-arrow: cat-arrow(C) quotient: x,y:A//B[x; y] fset: fset(T) cube-cat: CubeCat spreadn: spread4 op-cat: op-cat(C) cat-ob: cat-ob(C) nat-trans: nat-trans(C;D;F;G) psc_map: A ⟶ B cube_set_map: A ⟶ B interval-type: 𝕀 csm+: tau+ csm-ap-term: (t)s cc-snd: q csm-adjoin: (s;u) cubical-term: {X ⊢ _:A} cubical-type-ap-morph: (u f) fl-morph: <f> fl-lift: fl-lift(T;eq;L;eqL;f0;f1) face-lattice-property free-dist-lattice-with-constraints-property lattice-extend-wc: lattice-extend-wc(L;eq;eqL;f;ac) lattice-extend: lattice-extend(L;eq;eqL;f;ac) lattice-fset-join: \/(s) reduce: reduce(f;k;as) list_ind: list_ind fset-image: f"(s) f-union: f-union(domeq;rngeq;s;x.g[x]) list_accum: list_accum context-subset: Gamma, phi nc-e': g,i=j nequal: a ≠ b ∈  name-morph-satisfies: (psi f) 1 top: Top dM-lift: dM-lift(I;J;f) free-dma-lift: free-dma-lift(T;eq;dm;eq2;f) free-DeMorgan-algebra-property free-dist-lattice-property csm-id-adjoin: [u] csm-id: 1(X) interval-1: 1(𝕀) composition-function: composition-function{j:l,i:l}(Gamma;A) constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} cubical-path-0: cubical-path-0(Gamma;A;I;i;rho;phi;u) interval-0: 0(𝕀) dM0: 0 free-dist-lattice: free-dist-lattice(T; eq) free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) dM: dM(I) lattice-0: 0 nil: [] empty-fset: {} nc-0: (i0) partial-term-0: u[0]
Lemmas referenced :  comp-fun-to-comp-op_wf1 formal-cube_wf1 context-map_wf subtype_rel_self I_cube_wf csm-comp_wf cube-context-adjoin_wf interval-type_wf add-name_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf istype-le cube+_wf canonical-section_wf trivial-cube-set_wf face-type_wf it_wf cubical-type-at_wf_face-type subset-cubical-term2 sub_cubical_set_self csm-ap-type_wf csm-face-type cubical-path-0_wf cubical_set_cumulativity-i-j cubical-type-cumulativity2 istype-cubical-term cubical-subset_wf cube-set-restriction_wf face-presheaf_wf2 nc-s_wf f-subset-add-name subset-iota_wf names-hom_wf istype-nat fset-member_wf nat_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self istype-void fset_wf composition-uniformity_wf composition-structure_wf cubical-type_wf cubical_set_wf equal_wf squash_wf true_wf istype-universe context-subset-is-cubical-subset iff_weakening_equal csm-ap-term-cube+ canonical-section-cubical-path-0 fl-morph-id face-type-ap-morph csm-comp-term csm-ap-term_wf cc-fst_wf_interval thin-context-subset context-adjoin-subset3 nc-e'_wf thin-context-subset-adjoin context-adjoin-subset0 context-subset_wf subset-cubical-term cubical-term-equal2 subset-trans_wf fl-morph_wf nh-comp_wf nc-e'-lemma3 lattice-join_wf lattice-meet_wf bounded-lattice-axioms_wf bounded-lattice-structure-subtype lattice-axioms_wf lattice-structure_wf bounded-lattice-structure_wf subtype_rel_set face_lattice_wf lattice-point_wf cube_set_restriction_pair_lemma fl-morph-comp2 cubical-term_wf cube_set_map_wf csm-comp-type context-map_wf_cubical-subset csm-equal cubical-subset-I_cube cube-set-restriction-comp context-subset-map cubical-subset-is-context-subset-canonical csm-subset-domain csm-canonical-section-face-type cubical-term-equal csm-ap_wf csm-canonical-section-face interval-type-at I_cube_pair_redex_lemma face-type-at names_wf not-added-name neg_assert_of_eq_int assert-bnot bool_subtype_base bool_wf subtype_base_sq bool_cases_sqequal eqff_to_assert eq_int_wf int_subtype_base assert_of_eq_int eqtt_to_assert names-subtype dM-lift-inc DeMorgan-algebra-axioms_wf subtype_rel_transitivity DeMorgan-algebra-structure-subtype DeMorgan-algebra-structure_wf dM_wf nh-comp-sq sub_cubical_set_wf csm-context-subset-subtype3 csm+_wf_interval csm-subset-codomain csm-interval-type csm+_wf cubical-term-eqcd csm-context-subset-subtype2 subtype_rel_wf subset-cubical-type context-map-cube+-csm+ context-subset-is-subset arrow_pair_lemma trivial-member-add-name1 int_formula_prop_eq_lemma intformeq_wf dM-lift-sq dM-lift_wf2 cubical-type-cumulativity cubical-type-at_wf csm-ap-type-at cubical-term-at_wf uall_wf set_subtype_base not_wf name-morph-satisfies_wf constrained-cubical-term-eqcd csm-id-adjoin_wf-interval-1 csm-id-adjoin_wf interval-1_wf csm-ap-comp-term nc-e'-lemma2 cubical-type-ap-morph-comp-eq-general cubical-type-ap-morph_wf nc-0_wf csm-id-adjoin_wf-interval-0 dM0_wf formal-cube-restriction cube-set-map-subtype subtype_rel-equal partial-term-0_wf member_wf interval-0_wf csm-comp-assoc context-subset-term-subtype csm-ap-comp-type nc-1_wf context-map-comp2 cube+_interval-1 cube-set-restriction-id subtype_rel_universe1 nh-id_wf comp-fun-to-comp-op1_wf csm-ap-term-at nh-id-right csm-cubical-type-ap-morph istype-cubical-type-at nh-id-left face-lattice-property free-dist-lattice-with-constraints-property free-DeMorgan-algebra-property free-dist-lattice-property
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt isect_memberFormation_alt introduction cut sqequalHypSubstitution setElimination thin rename dependent_set_memberEquality_alt extract_by_obid dependent_functionElimination hypothesisEquality isectElimination hypothesis sqequalRule applyEquality instantiate natural_numberEquality unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality Error :memTop,  independent_pairFormation universeIsType voidElimination because_Cache setIsType functionIsType intEquality inhabitedIsType axiomEquality equalityTransitivity equalitySymmetry imageElimination universeEquality imageMemberEquality baseClosed productElimination equalityIstype isectEquality cumulativity productEquality hyp_replacement functionExtensionality promote_hyp equalityElimination applyLambdaEquality isect_memberEquality_alt equalityIsType4 baseApply closedConclusion equalityIsType1 functionEquality

Latex:
\mforall{}Gamma:j\mvdash{}.  \mforall{}A:\{Gamma  \mvdash{}  \_\}.
    \mforall{}[comp:Gamma  \mvdash{}  Compositon(A)].  (cfun-to-cop(Gamma;A;comp)  \mmember{}  Gamma  \mvdash{}  CompOp(A))



Date html generated: 2020_05_20-PM-04_32_16
Last ObjectModification: 2020_05_02-PM-07_25_25

Theory : cubical!type!theory


Home Index