Nuprl Lemma : cubical-type-ap-morph-comp-eq-general

[X:j⊢]. ∀[A:{X ⊢_}]. ∀[I,J,K:fset(ℕ)]. ∀[f:J ⟶ I]. ∀[g:K ⟶ J]. ∀[a:X(I)]. ∀[b:X(J)]. ∀[u:A(a)].
  ((u f) g) (u f ⋅ g) ∈ A(f ⋅ g(a)) supposing f(a) ∈ X(J)


Proof




Definitions occuring in Statement :  cubical-type-ap-morph: (u f) cubical-type-at: A(a) cubical-type: {X ⊢ _} cube-set-restriction: f(s) I_cube: A(I) cubical_set: CubicalSet nh-comp: g ⋅ f names-hom: I ⟶ J fset: fset(T) nat: uimplies: supposing a uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a and: P ∧ Q member: t ∈ T prop: subtype_rel: A ⊆B true: True all: x:A. B[x] squash: T
Lemmas referenced :  cubical-type-ap-morph-comp-general equal_wf cube-set-restriction_wf istype-cubical-type-at I_cube_wf names-hom_wf fset_wf nat_wf cubical-type_wf cubical_set_wf nh-comp_wf cubical-type-at_wf cube-set-restriction-comp true_wf squash_wf cubical-type-ap-morph_wf subtype_rel-equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut dependent_set_memberEquality_alt hypothesis independent_pairFormation equalityTransitivity equalitySymmetry sqequalRule productIsType equalityIstype inhabitedIsType hypothesisEquality thin introduction extract_by_obid sqequalHypSubstitution isectElimination hyp_replacement applyLambdaEquality setElimination rename instantiate because_Cache universeIsType applyEquality lambdaEquality_alt baseClosed imageMemberEquality natural_numberEquality dependent_functionElimination imageElimination productElimination independent_isectElimination

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}j  \_\}].  \mforall{}[I,J,K:fset(\mBbbN{})].  \mforall{}[f:J  {}\mrightarrow{}  I].  \mforall{}[g:K  {}\mrightarrow{}  J].  \mforall{}[a:X(I)].  \mforall{}[b:X(J)].  \mforall{}[u:A(a)].
    ((u  a  f)  b  g)  =  (u  a  f  \mcdot{}  g)  supposing  b  =  f(a)



Date html generated: 2020_05_20-PM-01_48_23
Last ObjectModification: 2020_04_20-AM-11_48_52

Theory : cubical!type!theory


Home Index