Nuprl Lemma : cubical-type-ap-morph-comp-general

[X:j⊢]. ∀[A:{X ⊢_}]. ∀[I,J,K:fset(ℕ)]. ∀[f:J ⟶ I]. ∀[g:K ⟶ J]. ∀[a:X(I)]. ∀[u:A(a)].
  (((u f) f(a) g) (u f ⋅ g) ∈ A(f ⋅ g(a)))


Proof




Definitions occuring in Statement :  cubical-type-ap-morph: (u f) cubical-type-at: A(a) cubical-type: {X ⊢ _} cube-set-restriction: f(s) I_cube: A(I) cubical_set: CubicalSet nh-comp: g ⋅ f names-hom: I ⟶ J fset: fset(T) nat: uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical-type: {X ⊢ _} all: x:A. B[x] and: P ∧ Q squash: T prop: true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  cubical_type_at_pair_lemma cubical_type_ap_morph_pair_lemma equal_wf squash_wf true_wf istype-universe cube-set-restriction_wf nh-comp_wf subtype_rel_self iff_weakening_equal istype-cubical-type-at I_cube_wf names-hom_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalHypSubstitution setElimination thin rename productElimination extract_by_obid dependent_functionElimination Error :memTop,  hypothesis sqequalRule applyEquality instantiate lambdaEquality_alt imageElimination isectElimination hypothesisEquality equalityTransitivity equalitySymmetry universeIsType universeEquality natural_numberEquality imageMemberEquality baseClosed independent_isectElimination independent_functionElimination isect_memberEquality_alt axiomEquality isectIsTypeImplies inhabitedIsType because_Cache

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}j  \_\}].  \mforall{}[I,J,K:fset(\mBbbN{})].  \mforall{}[f:J  {}\mrightarrow{}  I].  \mforall{}[g:K  {}\mrightarrow{}  J].  \mforall{}[a:X(I)].  \mforall{}[u:A(a)].
    (((u  a  f)  f(a)  g)  =  (u  a  f  \mcdot{}  g))



Date html generated: 2020_05_20-PM-01_48_05
Last ObjectModification: 2020_04_03-PM-08_26_14

Theory : cubical!type!theory


Home Index