Nuprl Lemma : cubical-type-ap-morph-comp-general
∀[X:j⊢]. ∀[A:{X ⊢j _}]. ∀[I,J,K:fset(ℕ)]. ∀[f:J ⟶ I]. ∀[g:K ⟶ J]. ∀[a:X(I)]. ∀[u:A(a)].
(((u a f) f(a) g) = (u a f ⋅ g) ∈ A(f ⋅ g(a)))
Proof
Definitions occuring in Statement :
cubical-type-ap-morph: (u a f)
,
cubical-type-at: A(a)
,
cubical-type: {X ⊢ _}
,
cube-set-restriction: f(s)
,
I_cube: A(I)
,
cubical_set: CubicalSet
,
nh-comp: g ⋅ f
,
names-hom: I ⟶ J
,
fset: fset(T)
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
cubical-type: {X ⊢ _}
,
all: ∀x:A. B[x]
,
and: P ∧ Q
,
squash: ↓T
,
prop: ℙ
,
true: True
,
subtype_rel: A ⊆r B
,
uimplies: b supposing a
,
guard: {T}
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
implies: P
⇒ Q
Lemmas referenced :
cubical_type_at_pair_lemma,
cubical_type_ap_morph_pair_lemma,
equal_wf,
squash_wf,
true_wf,
istype-universe,
cube-set-restriction_wf,
nh-comp_wf,
subtype_rel_self,
iff_weakening_equal,
istype-cubical-type-at,
I_cube_wf,
names-hom_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation_alt,
introduction,
cut,
sqequalHypSubstitution,
setElimination,
thin,
rename,
productElimination,
extract_by_obid,
dependent_functionElimination,
Error :memTop,
hypothesis,
sqequalRule,
applyEquality,
instantiate,
lambdaEquality_alt,
imageElimination,
isectElimination,
hypothesisEquality,
equalityTransitivity,
equalitySymmetry,
universeIsType,
universeEquality,
natural_numberEquality,
imageMemberEquality,
baseClosed,
independent_isectElimination,
independent_functionElimination,
isect_memberEquality_alt,
axiomEquality,
isectIsTypeImplies,
inhabitedIsType,
because_Cache
Latex:
\mforall{}[X:j\mvdash{}]. \mforall{}[A:\{X \mvdash{}j \_\}]. \mforall{}[I,J,K:fset(\mBbbN{})]. \mforall{}[f:J {}\mrightarrow{} I]. \mforall{}[g:K {}\mrightarrow{} J]. \mforall{}[a:X(I)]. \mforall{}[u:A(a)].
(((u a f) f(a) g) = (u a f \mcdot{} g))
Date html generated:
2020_05_20-PM-01_48_05
Last ObjectModification:
2020_04_03-PM-08_26_14
Theory : cubical!type!theory
Home
Index