Nuprl Lemma : dM-lift-sq

[I',J',I,J,f:Top].  (dM-lift(I;J;f) dM-lift(I';J';f))


Proof




Definitions occuring in Statement :  dM-lift: dM-lift(I;J;f) uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  dM-lift: dM-lift(I;J;f) free-dma-lift: free-dma-lift(T;eq;dm;eq2;f) free-DeMorgan-algebra-property free-dml-deq: free-dml-deq(T;eq) dM: dM(I) dma-neg: ¬(x) union-deq: union-deq(A;B;a;b) free-dist-lattice-property lattice-extend: lattice-extend(L;eq;eqL;f;ac) free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) lattice-fset-join: \/(s) lattice-join: a ∨ b lattice-fset-meet: /\(s) lattice-meet: a ∧ b free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) all: x:A. B[x] member: t ∈ T top: Top eq_atom: =a y ifthenelse: if then else fi  bfalse: ff btrue: tt free-dist-lattice: free-dist-lattice(T; eq) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) lattice-1: 1 lattice-0: 0 uall: [x:A]. B[x] dm-neg: ¬(x) reduce: reduce(f;k;as) list_ind: list_ind fset-image: f"(s) f-union: f-union(domeq;rngeq;s;x.g[x]) list_accum: list_accum record-select: r.x opposite-lattice: opposite-lattice(L) record-update: r[x := v] empty-fset: {} nil: [] it: so_lambda: λ2y.t[x; y] fset-singleton: {x} cons: [a b]
Lemmas referenced :  free-DeMorgan-algebra-property free-dist-lattice-property top_wf rec_select_update_lemma
Rules used in proof :  sqequalSubstitution sqequalRule sqequalTransitivity computationStep sqequalReflexivity cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis because_Cache isect_memberFormation introduction sqequalAxiom isectElimination hypothesisEquality

Latex:
\mforall{}[I',J',I,J,f:Top].    (dM-lift(I;J;f)  \msim{}  dM-lift(I';J';f))



Date html generated: 2016_05_18-AM-11_57_58
Last ObjectModification: 2016_03_29-PM-00_35_24

Theory : cubical!type!theory


Home Index