Nuprl Lemma : context-subset-term-subtype
∀[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[phi:{Gamma ⊢ _:𝔽}].  ({Gamma ⊢ _:A} ⊆r {Gamma, phi ⊢ _:A})
Proof
Definitions occuring in Statement : 
context-subset: Gamma, phi
, 
face-type: 𝔽
, 
cubical-term: {X ⊢ _:A}
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
Lemmas referenced : 
subtype_rel_transitivity, 
cubical-term_wf, 
cubical-type-cumulativity2, 
cubical_set_cumulativity-i-j, 
context-subset_wf, 
face-1_wf, 
thin-context-subset, 
subset-cubical-term, 
face-type_wf, 
cubical-type_wf, 
cubical_set_wf, 
subset-context-1, 
face-term-implies-subset, 
face-term-implies-1
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
sqequalRule, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
universeIsType
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].    (\{Gamma  \mvdash{}  \_:A\}  \msubseteq{}r  \{Gamma,  phi  \mvdash{}  \_:A\})
Date html generated:
2020_05_20-PM-02_55_24
Last ObjectModification:
2020_04_06-AM-10_25_56
Theory : cubical!type!theory
Home
Index