Nuprl Lemma : context-subset-term-subtype

[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[phi:{Gamma ⊢ _:𝔽}].  ({Gamma ⊢ _:A} ⊆{Gamma, phi ⊢ _:A})


Proof




Definitions occuring in Statement :  context-subset: Gamma, phi face-type: 𝔽 cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet subtype_rel: A ⊆B uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B guard: {T} uimplies: supposing a
Lemmas referenced :  subtype_rel_transitivity cubical-term_wf cubical-type-cumulativity2 cubical_set_cumulativity-i-j context-subset_wf face-1_wf thin-context-subset subset-cubical-term face-type_wf cubical-type_wf cubical_set_wf subset-context-1 face-term-implies-subset face-term-implies-1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality applyEquality hypothesis sqequalRule because_Cache equalityTransitivity equalitySymmetry independent_isectElimination universeIsType

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].    (\{Gamma  \mvdash{}  \_:A\}  \msubseteq{}r  \{Gamma,  phi  \mvdash{}  \_:A\})



Date html generated: 2020_05_20-PM-02_55_24
Last ObjectModification: 2020_04_06-AM-10_25_56

Theory : cubical!type!theory


Home Index