Nuprl Lemma : face-term-implies-1

[Gamma:j⊢]. ∀[phi:{Gamma ⊢ _:𝔽}].  Gamma ⊢ (phi  1(𝔽))


Proof




Definitions occuring in Statement :  face-term-implies: Gamma ⊢ (phi  psi) face-1: 1(𝔽) face-type: 𝔽 cubical-term: {X ⊢ _:A} cubical_set: CubicalSet uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T face-term-implies: Gamma ⊢ (phi  psi) all: x:A. B[x] implies:  Q cubical-term-at: u(a) face-1: 1(𝔽) lattice-1: 1 record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y btrue: tt fset-singleton: {x} cons: [a b] subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] uimplies: supposing a cubical-type-at: A(a) pi1: fst(t) face-type: 𝔽 constant-cubical-type: (X) I_cube: A(I) functor-ob: ob(F) face-presheaf: 𝔽 lattice-point: Point(l) bfalse: ff
Lemmas referenced :  lattice-1_wf face_lattice_wf lattice-point_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf equal_wf lattice-meet_wf lattice-join_wf cubical-term-at_wf face-type_wf subtype_rel_self I_cube_wf fset_wf nat_wf cubical-term_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaFormation_alt sqequalRule hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality lambdaEquality_alt setElimination rename inhabitedIsType equalityTransitivity equalitySymmetry equalityIstype universeIsType instantiate productEquality cumulativity isectEquality because_Cache independent_isectElimination dependent_functionElimination axiomEquality functionIsTypeImplies isect_memberEquality_alt isectIsTypeImplies

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].    Gamma  \mvdash{}  (phi  {}\mRightarrow{}  1(\mBbbF{}))



Date html generated: 2020_05_20-PM-02_46_44
Last ObjectModification: 2020_04_04-PM-05_00_50

Theory : cubical!type!theory


Home Index